首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用水不溶性燕麦木聚糖吸附分离绿木霉木聚糖酶,结果表明,该木聚糖能选择性吸附分离木聚糖酶组分,分离所得两组分均达到电泳纯.未吸附组分(XynⅠ)和吸附组分(XynⅡ)的分子质量分别为29.5和26.5ku,它们对桦木木聚糖的米氏常数分别为1.73和3.16g/L.以纯化酶组分及其混合物水解燕麦木聚糖,采用高效液相色谱分析相应的水解产物,结果表明,XynⅠ降解燕麦木聚糖时,主要降解作用发生在底物中没有取代基的区域,水解产物的聚合度较高;XynⅡ对底物具有更强的适应性,能降解底物中有取代基的区域,相对XynⅠ酶组分,XynⅡ酶组分对低聚合度的木聚糖的活性更高,木二糖为主要降解产物.木聚糖酶组分均为酸性酶,XynⅠ耐酸性范围更宽,而XynⅡ对pH值更为敏感;XynⅠ、XynⅡ的最适反应温度分别为45和55℃;而它们的适宜pH值分别为4.5和5.5.  相似文献   

2.
分别研究了粗木聚糖酶和纯化的木聚糖酶在超滤膜反应器(UMR)和常规反应器(CSBR)中的酶解特性。粗木聚糖酶或纯木聚糖酶在UMR中酶解木聚糖时,反应进行了525 m in时所得产品中低聚木糖各组分的质量分数(木二糖~木五糖)均在20%左右,木糖质量分数约为9.5%。在UMR中粗木聚糖酶降解木聚糖时的低聚木糖得率、低聚木糖占总糖的比例和低聚木糖生产能力比纯木聚糖酶在CSBR中分别高19.1%、14.8%和13.5%;而木糖的得率却低55.2%。粗木聚糖酶在UMR中酶解木聚糖时,所得低聚木糖产品中木二糖~木五糖组分含量基本相等;纯木聚糖酶在CSBR中酶解木聚糖时,所得低聚木糖产品中木二糖含量较高。同纯木聚糖酶在CSBR中酶解特性相比,粗木聚糖酶在UMR中酶解木聚糖可以制得高质量低聚木糖。  相似文献   

3.
为充分利用杨树资源,以杨木加工废弃物杨木屑为原料,研究碱法提取木聚糖的工艺条件,并采取酶法制备低聚木糖。以质量分数为1%的稀硫酸预处理可以有效提高杨木屑木聚糖的得率,较对照组提高了2倍。对比3种碱液(NaOH、KOH和NaHCO_3)提取杨木屑木聚糖的得率,以NaOH提取的木聚糖得率最大。通过单因素和正交试验优化NaOH提取杨木屑木聚糖的条件,结果显示碱液质量分数10%,固液比1∶10(g∶mL),温度120℃下提取3 h所得的木聚糖得率可达到20.7%,且四因素对提取得率的影响显著程度依次为提取温度碱液质量分数提取时间固液比。碱法提取杨木屑木聚糖酸水解后产物由88.69%D-木糖、4.76%纤维二糖和6.62%葡萄糖组成且不含有阿拉伯糖,说明碱法提取的杨木屑木聚糖支链上主要连有木糖。以碱法提取杨木屑木聚糖为底物,优化了来源于嗜热菌Dictyoglomus thermophilum的重组木聚糖酶Xyn B-DT的酶解适宜条件:在温度70℃,pH 6.0,酶用量3.00 U/m L,反应时间12 h后,杨木屑木聚糖水解产物中以木二糖和木三糖为主,并含有少量木四糖,降解率达86.2%。研究结果为杨木屑木聚糖的高值化利用奠定了基础。  相似文献   

4.
为降低酶法制备低聚木糖的成本并提高产品纯度,围绕重组木聚糖酶的诱导表达条件和酶水解木聚糖的工艺参数进行研究,考察了诱导剂浓度、诱导温度、诱导光密度(OD600)值和诱导时间等因素对重组大肠杆菌(pTrc99A-podoxyn11-DE3)产重组木聚糖酶的影响,针对酶水解过程中酶用量、酶水解时间及产物分布情况进行了探讨。结果表明:在诱导剂浓度5 mmol/L,诱导温度32℃,诱导OD600值1.2,诱导时间8 h的最佳诱导条件下,重组酶酶活力可达5.72 U/mL。玉米芯木聚糖质量浓度20 g/L,温度45℃,pH值5.5,重组木聚糖酶用量为60 U/g条件下水解12 h,酶解率可达49.90%,低聚木糖得率21.75%。杨木木聚糖质量浓度20 g/L,温度45℃,pH值5.5,重组木聚糖酶用量35 U/g条件下水解14 h,酶解率可达79.50%,低聚木糖得率73.30%。重组酶水解两种木聚糖的主要产物均为木二糖和木三糖,几乎不产生木糖。  相似文献   

5.
木聚糖酶法制木二糖和木三糖的纯化及结构表征   总被引:2,自引:0,他引:2  
采用聚丙烯酰胺凝胶Bio-GelP-2对酶解法制备的低聚木糖混合液中的木二糖和木三糖组分进行了初步分离,并采用相同的层析介质对粗木二糖和木三糖组分进行了纯化,获得了纯度约为97%的木二糖组分和纯度约为94%的木三糖组分.糖基组成分析结果表明该木二糖和木三糖组分均不含阿拉伯糖基,电喷雾电离质谱(ESI-MS)分析表明该木二糖和木三糖组分的相对分子质量(Mr)分别为282和414,不含乙酰基、阿拉伯糖基或4-O-甲基葡萄糖醛酸基.木二糖组分的13CNMR图谱证实,木二糖组分不含任何取代基.由实验可知,该木二糖和木三糖组分分别是由2个和3个木糖单元以β(1→4)糖苷键连接而成的均一寡糖,不含任何取代基.  相似文献   

6.
为寻求具有耐热性能的木聚糖酶,笔者以嗜热网球菌(Dictyoglomus thermophilum)DSM3960的基因组为模板,克隆得到木聚糖酶基因xyn B-DT,该基因全长1 083 bp,共编码361个氨基酸,蛋白的理论分子量约为40ku。通过NCBI数据库比对发现该基因编码的蛋白质属于糖苷水解酶G11家族。实现大肠杆菌异源表达重组木聚糖酶Xyn B-DT,通过IPTG诱导,酶活达到30.6 U/mL。该重组木聚糖酶的最适温度为85℃,在60~80℃范围内均有较好温度稳定性,在60℃条件下保温2 h,酶活维持在90%以上,在90℃下保温2 h,酶活尚残余约50%;最适pH为6.5,在pH为5.0~7.5范围内保温24 h仍可保留约90%剩余酶活力。该酶以Beechwood木聚糖为底物,米氏常数(K_m)和最大反应速率(V_(max))值分别为5.63 mg/mL和1.572 mmol/(L·min~(-1))。以玉米芯木聚糖为底物,研究XynB-DT水解玉米芯木聚糖的条件及产物,结果显示在温度70℃、pH 6.0条件下酶解12 h,加酶量为400 U/g,最终酶解得率为44.3%,玉米芯木聚糖的水解产物主要以木二糖和木三糖为主,表明该木聚糖酶在低聚木糖制备方面具有较大应用潜能。  相似文献   

7.
采用聚乙二醇6000/柠檬酸钠的双水相木聚糖酶水解体系制备木二糖,以10 g/L桦木木聚糖为底物,木聚糖酶的酶用量为20 IU/g(以木聚糖质量计),在50℃、p H值5.6条件下,水解8 h制备木二糖,木二糖的酶解得率为13.8%。双水相水解体系对木聚糖酶回收率为66.4%,对木二糖回收率为87.2%;采用凝胶层析纯化方法,以葡聚糖凝胶LH-20为分离介质,脱气超纯水为洗脱剂,在柱温35℃、洗脱溶剂流速0.1 m L/min、上样量0.3 m L条件下,分离纯化木二糖,木二糖纯度为98.5%。  相似文献   

8.
研究了重组木聚糖酶C0602生产低聚木糖的制备工艺,考察了不同类型底物、底物浓度和酶用量对酶解效率和低聚木糖产率的影响.实验结果表明,低聚木糖生产原料以抽提木聚糖为宜.桦木木聚糖质量浓度30g/L,重组木聚糖酶用量20 IU/g条件下水解4 h,酶解率可达56.05%,低聚木糖产率(C2~C6)为29.76%,产品平均...  相似文献   

9.
木聚糖相对分子质量分布对里氏木霉合成木聚糖酶的影响   总被引:3,自引:2,他引:1  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶茵,研究了相对分子质量(Mw)分布不同的木聚糖对木聚糖酶合成的影响。通过SephadexG一100凝胶过滤色谱分级分离发现木聚糖A中低Mw组分较多,木聚糖B中低Mw组分较少,木聚糖C中低Mw组分最少。分别以这3种木聚糖为碳源合成木聚糖酶,最高木聚糖酶活力分别为153.64、120.84和110.84IU/mL,产酶时间分别为60、72和96h。用这3种碳源合成的木聚糖酶酶解粗木聚糖,酶解2h时,产物中低聚木糖分别占总糖的80.70%、68.56%和66.92%。这表明低Mw组分较多的木聚糖不仅有利于促进木聚糖酶的诱导合成,而且有利于促进内切-1,4-木聚糖酶的合成。  相似文献   

10.
高温预处理对木聚糖酶水解制备低聚木糖的促进作用   总被引:1,自引:0,他引:1  
采用160~180℃的高温对木聚糖酶解残渣中残余木聚糖进行预处理,并将预处理液酶水解。最优反应条件为180℃预处理30 m in,残余木聚糖的42.54%被有效降解,上清液中低聚木糖(XOS)的含量占上清液总糖的32.13%。上清液经木聚糖酶酶解后,低聚木糖的含量可达到上清液总糖的84.93%。  相似文献   

11.
木聚糖酶水解制取低聚木糖的研究   总被引:19,自引:0,他引:19  
比较了木聚糖酶和纤维素酶水解木聚糖制备低聚木糖的效果,并在10L酶解罐中研究了搅拌速率和酶解时间等因素对木聚糖酶水解的影响。优化了酶解工艺条件,当木聚糖质量浓度为30g/L,木聚糖酶体积用量为1%,搅拌速率180r/min时,酶解2h低聚糖得率可达35.2%。总糖得率为41.9%。产品酶解液中25.9%固形物是聚合度2-5的低聚木糖。  相似文献   

12.
研究了链霉菌Z18中一种低分子质量木聚糖酶(XynA)的纯化和性质.粗酶液经过20%~50%硫酸铵沉淀和S-300凝胶过滤两步纯化得到电泳纯的XynA,分子质量为22ku,最适pH值为7.0,pH值稳定范围在5.0~8.0之间;最适温度为60℃,稳定温度为50℃.XynA对不同木聚糖表现出较高的活力,对其它所试底物无活性.XynA水解桦木木聚糖的主要产物为木二糖和木三糖,无木糖生成,说明它适合应用于低聚木糖的生产.  相似文献   

13.
以酶解渣为碳源制备木聚糖酶的研究   总被引:3,自引:6,他引:3  
以里氏木霉(Tichoderma reesei)Rut C-30为产酶菌,低聚木糖制备过程中酶解渣为碳源可透导产生含低纤维素酶活(0.106IU/mL)的木聚糖酶(154.67IU/mL),两种酶活的比值达1459,与粗木聚糖为碳源产木聚糖酶相比,木聚糖酶活提高了1.67倍,而纤维素酶活没有增加。此酶在50℃条件下酶解粗木聚糖和酶解渣时,pH值5时酶解效率最高,酶解产物通过HPLC分析,主要是木糖。该酶系的组成主要是外切-β-木糖苷酶。  相似文献   

14.
以高灰分含量麦糠(WWS)为原料,考察了水热预处理,以及预水洗后水热预处理对麦糠化学组分及其酶水解性能的影响。研究结果表明:麦糠在固液比1∶10(g∶mL)和180℃条件下水热预处理40 min,预处理麦糠的酶水解性能和酶解可发酵糖生成量最高,葡聚糖和木聚糖酶水解得率分别为40.84%和39.67%,可发酵糖生成量为15.74 g(其中葡萄糖11.68 g、木糖4.06 g)。进一步对预处理麦糠酶水解过程中酶用量进行优化,发现在纤维素酶用量40 FPU/g(以葡聚糖质量计)、木聚糖酶用量140 U/g(以木聚糖质量计)和β-葡萄糖苷酶用量48 U/g(以葡聚糖质量计)条件下,预处理麦糠葡聚糖和木聚糖酶水解得率可达最优值,分别为48.98%和49.06%。麦糠吸附型灰分的酸缓冲作用是制约其水热预处理效果的关键因素,预水洗可有效降低麦糠的灰分,同时提高葡聚糖和木聚糖含量;麦糠经洗涤比500∶1(mL∶g)预水洗后进行水热预处理,预处理麦糠的葡聚糖和木聚糖酶解得率分别从未水洗时的48.98%和49.06%提高到65.59%和70.11%,此时酶水解液中葡萄糖和木糖质量浓度分别可达17.50和4.75 g/L。同时,麦糠预水洗可有效降低后续酶解过程的纤维素酶用量。  相似文献   

15.
以毛竹加工剩余物为原料,分离出竹青和竹黄。经粉碎过筛、苯/乙醇脱蜡和次氯酸钠脱木质素3个过程得到相应的综纤维素,然后用1%、5%和10%的KOH依次提取综纤维素得到半纤维素,竹青、竹黄半纤维素的总提取率分别为81.74%和85.36%。对所提取的半纤维素进行成分分析、分子量测定、红外光谱和核磁共振分析,结果表明,竹青、竹黄半纤维素成分主要为木糖,分别占61.02%~73.76%和65.22%~80.00%。竹黄半纤维素的重均分子质量为44 870~48 560 g/mol,高于竹青半纤维素的重均分子质量(43 970~46 245 g/mol)。竹青、竹黄碱溶半纤维素都是典型的阿拉伯糖基木聚糖结构,主链为β-D-吡喃木糖形成的木聚糖,在木糖基的C-2位连接着4-O-甲基-α-D-葡萄糖醛酸,C-3位连有α-L-呋喃阿拉伯糖,同时部分木质素通过苯苷键与半纤维素中的糖基相连。  相似文献   

16.
木聚糖酶广泛应用于食品、饲料、纺织、能源等领域。在生产过程中木聚糖酶的热稳定性较为重要,它直接影响酶的反应温度及使用效率。添加Ca~(2+)能够显著提高来源于Thermotoga thermarum DSM 5069的木聚糖酶Xyn10A在高温(85℃)条件下的热稳定性。为解析Xyn10A酶蛋白中的Ca~(2+)结合区域及热稳定性机制,笔者采用蛋白质结构模拟和定点突变技术以确定该结合区域,并分析其对于酶热稳定性的影响机制。酶蛋白的建模和结构比对结果表明,GH10家族木聚糖酶的结构保守性远大于其序列保守性;木聚糖酶Xyn10A中局部环区(712IYRDNATKYEIPP724)涉及Ca~(2+)的结合功能,同时其热稳定性依赖于该环区与Ca~(2+)之间的亲和力。对该环区的定点突变和删除突变导致Xyn10A无法有效地结合Ca~(2+)。Ca~(2+)可与酶蛋白中的(712IYRDNATKYEIPP724)环区形成配位键,显著降低Xyn10A酶催化结构域的柔性和自由度,使Xyn10A酶能够在高温下保持优良的热稳定性,进而有效地发挥其高温催化水解木聚糖的能力。  相似文献   

17.
内切木聚糖酶的选择性纯化及酶解制备低聚木糖的研究   总被引:5,自引:3,他引:2  
研究了超滤分离除去里氏木霉木聚糖酶中的外切-β-木糖苷酶,以及酶解制备低聚木糖。研究结果表明:用超滤的方法能完全除去外切-β-木糖苷酶,透过液经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)鉴定为单带,酶解产物全部是低聚木糖,当酶解时间从2 h延长到10 h时,低聚木糖的得率从26.83%增加到54.22%;而用粗木聚糖酶酶解制备低聚木糖时,当酶解时间从2 h延长到10 h时,低聚木糖得率从17.97%下降到11.12%。因此,采用该技术可以大幅度增加总糖中低聚木糖所占的比例,显著提高木聚糖原料的有效利用率。  相似文献   

18.
分离制取玉米秸秆中非木质素类的4类组分纤维素、半纤维素、热水提取物和乙醇提取物,采用高效液相色谱研究其在稀硫酸预处理过程中主要水溶性降解产物的生成规律。其中,纤维素降解生成葡萄糖、甲酸、乙酰丙酸和5-羟甲基糠醛;半纤维素降解生成木糖、阿拉伯糖、葡萄糖醛酸、半乳糖醛酸、乙酸和糠醛;热水提取物降解生成葡萄糖、木糖、阿拉伯糖、甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛;乙醇提取物降解生成少量的葡萄糖、木糖、乙酸、乙酰丙酸和5-羟甲基糠醛。抑制物甲酸、乙酰丙酸和5-羟甲基糠醛主要来自纤维素,乙酸和糠醛来自半纤维素,产量可分别为1.4%、2.7%、2.2%、3.1%和7.8%(以玉米秸秆计)。硫酸质量分数是影响乙酸产量的主要工艺因素,而反应温度是影响甲酸、乙酰丙酸、5-羟甲基糠醛和糠醛产量的主要工艺因素。  相似文献   

19.
在稀酸等化学预处理过程中,木质素会降解生成酚类等产物进入后续糖化阶段,研究表明这些木质素降解产物会抑制木质纤维降解酶的水解效率,然而其抑制机制尚不清楚。笔者选择了3种典型的木质素降解产物:香草醛、4-羟基苯甲醛和丁香醛,考察了它们对商品纤维素酶和木聚糖酶,以及单一关键纤维素酶组分和β-木糖苷酶水解的影响,并探讨其抑制规律。实验结果表明,这3种木质素降解产物对纤维素酶和木聚糖酶的水解均有抑制,其抑制能力随降解产物浓度的增加而增强。当3种木质素降解产物的质量浓度为10 mg/m L时,纤维素酶水解微晶纤维素48 h的葡萄糖得率由71.17%分别减少到33.80%、29.52%和32.03%,说明这3种木质素降解产物对纤维素酶的抑制作用差异不明显。3种木质素降解产物对β-葡萄糖苷酶水解纤维二糖的效率没有影响,但是会强烈抑制外切葡聚糖酶CBH I的酶活。当木质素降解产物的质量浓度为2 mg/m L时,与未添加木质素降解产物的酶活相比,CBH I酶活分别降低至79.64%、86.76%和71.89%,抑制强弱顺序为:丁香醛香草醛4-羟基苯甲醛。此外,3种木质素降解产物对木聚糖酶和β-木糖苷酶的抑制强弱顺序均为:4-羟基苯甲醛香草醛丁香醛,当3种木质素降解产物的质量浓度为10 mg/m L时,木聚糖酶水解木聚糖48 h的木糖得率由57.28%分别减少到12.26%、20.16%和30.43%。抑制动力学试验表明,4-羟基苯甲醛对CBH I的抑制属于竞争性抑制,对β-木糖苷酶的抑制属于非竞争性抑制。  相似文献   

20.
对采用选择性控制木聚糖酶水解条件制备低聚木糖进行了研究,并同时探讨了以两种木聚糖形式--干粉和湿浆为原料造成的酶解结果差异及其原因.结果表明,目前较适宜的低聚木糖制备工艺为以木聚糖湿浆为底物,底物质量浓度20~40g/L,酶用量1%(体积分数,下同),pH值4.8,温度50℃,酶解时间4 h.造成干粉与湿浆酶解制备低聚糖结果差异的原因,可能是由于这两种底物自身结构特性的差异导致了底物可及度,以及酶与底物吸附作用的不同.结果显示当以干粉为底物,酶用量10%,酶解时间12 h,低聚木糖得率最高可达40%(质量分数)左右,而以湿浆为底物,达到同样低聚糖得率的酶用量和酶解时间分别仅需1%和4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号