首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose

Infiltration modeling is an important tool to describe the process of water infiltration in the soil. However, direct measurements of the parameters of infiltration models are usually time-consuming and laborious. The present study proposed an effective method to estimate parameters of the Kostiakov-Lewis model (a classical infiltration model) from soil physical properties (SPPs).

Materials and methods

Parameters k, α, and f0 of the Kostiakov-Lewis infiltration models were measured in 240 double-ring field experiments in Shanxi Province, China. SPPs at the corresponding experimental points were measured at the topsoil layer (TL, 0–20 cm) and the top-subsoil layer (TSL, 0–20 and 20–40 cm). The Kennard-Stone (KS) sampling method and principal component analysis (PCA) were used for dividing training samples and extracting principal components (PCs) of SPPs, respectively. Partial least squares (PLS), back-propagation neural networks (BPNNs), and a support vector machine (SVM) were used to establish models for estimating k, α, and f0 with the SPPs of TL and TSL as the input variables (IV).

Results and discussion

The differences in soil density (BD), texture, and moisture content (θv) were found in topsoil and subsoil, but loading distributions of SPPs on PCs present different degrees of correlation. Moreover, SVM produced the most accurate estimation among these three methods for using the SPP of TL and TSL as inputs. The highest accuracy for k estimations was obtained by SVM using the SPP of TL as IV; R and RMSE in the model test process were 0.78 and 0.3 cm min?1, respectively. However, using SPP of TSL as IV obtained the highest accuracy for both α and f0 estimations with the SVM method (R values were 0.71 and 0.82, respectively, and RMSE values were 0.03 and 0.018 cm min?1) in the model testing.

Conclusions

The SVM method with SPPs as inputs is an effective and practical method for estimating the parameters of the Kostiakov-Lewis infiltration model.

  相似文献   

2.
An automated soil sampler and a system for measuring the physical properties of soil cores in the field were developed for the study of soil compaction and tillage effects on soil physical properties. The system measures the bulk density, air-filled porosity, intrinsic air permeability, and moisture content on 47.6 mm diameter soil cores as well as measuring cone penetration resistance in the field. Results of a laboratory calibration study illustrated that the system measures the soil properties with acceptable accuracy. A main benefit of the system was the fact that it could measure all of the above properties on ten core samples down to a depth of 0.5 m, typically within 15 min.

A field compaction study showed that the system was capable of detecting the effects of a 15.2 tonne axle load on the soil down to a depth of 0.4 m, 1 year after compaction.  相似文献   


3.
The long-term effects of two different tillage systems, conventional (CT) and no tillage (NT), were studied in an olive orchard in Santaella (Southern Spain) for 15 years. In both tillage systems, two distinct zones developed in the orchard in relation to soil physical properties; one underneath the tree canopy, and the other in the rows between trees. Surface soil organic matter content, bulk density, cone index, macroscopic capillary length and hydraulic conductivity showed significant differences between tillage systems and positions. After 15 years, the NT treatment achieved greater bulk density and cone index values than CT. This compaction reduced the infiltration rate of NT soil with respect to CT, particularly in the rows between trees. Despite that reduction, the NT soil retained a moderate infiltration potential. That may be explained by the high infiltration rates and macroporosity of the zone beneath the tree, the temporary effects of tillage on infiltration and probably by the self-repair of soil structure in the Vertisol studied. Yield was not affected by tillage except in one year with very low precipitation, where NT significantly yielded more than CT. The reduction in infiltration in NT must have been compensated by unknown factors that improve the tree water supply in drought years.  相似文献   

4.
生物质炭对土壤物理性质影响的研究进展   总被引:5,自引:0,他引:5  
生物质炭在农业与环境中的应用已成为近期国内外研究热点,有关生物质炭特性以及生物质炭对土壤化学、生物学性质和作物产量的影响,已经有一些综述,但是生物质炭对土壤物理性质影响的相关综述很少。本文对近10年生物质炭对土壤物理性质影响相关的研究成果进行了整理分析。研究结果发现生物质炭可以降低土壤容重,提高土壤团聚体稳定性,增加田间持水量和土壤有效水含量,降低饱和导水率等。生物质炭影响土壤物理性质的主要原因是生物质炭具有较大的比表面积和孔隙度。此外,生物质炭与土壤矿质颗粒结合,并通过对土壤微生物活性和植物生长的影响间接影响土壤物理性质。生物质炭对土壤物理性质的影响与多种因素有关,如生物质炭原料、裂解温度、施用量和颗粒大小,土壤质地和处理时间等。关于生物质炭对土壤物理性质影响的长期研究很少,且缺乏田间试验。因此,将来的研究应更加倾向于长期田间条件下生物质炭对土壤物理性质的影响,并逐渐发现生物质炭的作用机理,为实际的农业生产和生态治理提供科学依据。  相似文献   

5.
采用自制的模拟下凹式绿地,通过模拟不同设计暴雨强度条件下下凹式绿地的进水负荷,动态监测下凹式绿地在蓄水过程中土壤水分的渗透量和平均入渗速率,研究北京地区下凹式绿地在蓄积周边外来雨水径流过程中土壤水分的渗透规律以及蓄积雨水径流后对土壤孔隙及土壤密度的影响。结果表明:1)在土壤含水率基本相同的条件下,下凹式绿地土壤渗透性能在1、3、5年一遇暴雨情况下会随着暴雨强度的增加而增大;2)在设计暴雨强度一致时,土壤水分的渗透量和平均入渗速率没有明显差异,土壤密度小、总孔隙度大的渗透量和平均入渗速率更大;3)随着绿地蓄水次数的增多,土壤密度和总孔隙度变化较大,蓄水试验后,土壤密度由最初的1.33 g/cm3变为1.65g/cm3、总孔隙度由原来的50.06%变为39.18%。  相似文献   

6.
Gao  Liqian  Sun  Hui  Xu  Mingxiang  Zhao  Yunge 《Journal of Soils and Sediments》2020,20(1):133-142
Purpose

Biological soil crusts (biocrusts) are ubiquitous in arid and semi-arid regions and play many critical roles in soil stabilization and erosion prevention, greatly decreasing soil loss. Although sediments may be completely controlled by well-developed biocrusts, runoff loss is observed. Consequently, it is important to study how biocrusts resist runoff erosion in different developmental stages to evaluate and manage water erosion.

Materials and methods

In the Loess Plateau Region, we sampled 32 biocrust plots representing eight stages of biocrust development and 5 slope cropland soil plots as bare soil control plots. We then used a rectangular open channel hydraulic flume to test the effects of biocrust development on runoff erosion.

Results and discussion

As expected, the establishment of biocrusts enhanced soil stability, and accordingly, soil anti-scourability significantly increased with biocrust development. Biocrusts exhibiting more than 36% or 1.22 g dm?2 of moss coverage or biomass fully protected the soil from runoff erosion. Moreover, soil properties, such as soil organic matter, soil cohesion and soil bulk density, were also important in reducing erosion. The findings indicated that biocrusts inhibited runoff erosion through direct physical protection related to biocrust cover and biomass and through the indirect modification of soil properties. In the early biocrust development stage (when moss cover was less than 36%), cyanobacterial biocrust played a primary role in providing resistance to runoff erosion, with resistance being positively related to cyanobacterial biomass (chlorophyll a) and influenced by soil properties.

Conclusions

The relationship between soil anti-scourability and moss coverage or biomass can be divided into two stages based on a moss cover or biomass threshold. The capacity of biocrusts to resist runoff erosion was limited when moss cover was below the threshold value. Therefore, the stage corresponding to this level of moss cover should be of concern when estimating, predicting and managing water erosion.

  相似文献   

7.
Effects of diatomite on soil physical properties   总被引:1,自引:0,他引:1  
Organic and inorganic soil amendments are commonly added to soil for improving its physical and chemical characteristics which promote plant growth. Although many inorganic amendments are extensively used for this purpose, diatomite (DE) is not commonly used. This study was conducted to determine effects of diatomite applications (10, 20, and 30% v/v) on physical characteristics of soils with different textures (Sandy Loam, Loam, and Clay), under laboratory conditions. The results indicated that diatomite application protects large aggregate (> 6.4 mm) formation in clay-textured soils, however it reduced the mean weight diameter in sand-textured soil. 30% diatomite reduced mean weight diameter in sand-textured soils from 1.74 to 1.49 mm. Diatomite applications significantly increased aggregate stability of all the experimental soils in all aggregate size fractions. In overall, aggregate stability increased from 28.04% to 45.70% with the application rate of 30%. Diatomite application also significantly increased soil moisture content at field capacity in SL textured soil. 30% diatomite increased field capacity in sand-textured soil in the percent of 43.78 as compared with control. Therefore it is suggested that diatomite may be considered as a soil amendment agent for improving soil physical characteristics. However, its effectiveness in enhancing soil properties depends on initial soil factors and texture. Moreover, since its protective effect against large aggregate (> 6.4 mm) formation and reducing effect on soil penetration resistance in clay textured soils, diatomite might be an alternative soil amendment agent in soil tillage practices and seedling.  相似文献   

8.
Green-Ampt模型参数简化及与土壤物理参数的关系   总被引:3,自引:3,他引:0  
简化模型表达形式从而减少参数个数,对于Green-Ampt入渗模型的实际应用具有重要的现实意义。该文通过推导湿润锋处平均基质吸力与Philip模型中土壤吸湿率关系基础上提出了简化的Green-Ampt入渗模型,基于新疆222兵团两块壤质土壤田块上土壤水分入渗试验资料,分析了Green-Ampt简化入渗模型参数与土壤物理参数之间的关系,建立了模型参数与土壤物理参数之间的定量经验转换函数。结果表明,入渗参数A(组合参数)与土壤初始含水率呈对数负相关,相关系数为0.77,A与土壤紧实度和黏粒含量均呈指数负相关,相关系数分别为0.70和0.74。饱和导水率Ks与土壤紧实度和黏粒呈指数负相关,相关系数分别为0.74和0.73。A和Ks与土壤初始含水率、土壤紧实度和黏粒含量呈高度和中度多元线性相关,相关系数分别为0.9和0.79。研究表明Green-Ampt简化入渗模型能够在一定精度下分析土壤入渗过程。  相似文献   

9.
Tillage refers to the manipulation of soil by an implement powered by humans, animals or machines. Tillage operation generally create two zones: (1) a zone where soil has been fractured and then turned over leading to rough surface conditions; and (2) a zone where soil has been compacted by the weight of the machinery. Thus, modeling tillage effects on soil physical properties involves two separate approaches depending upon the zone under consideration.

Modeling tillage systems offers an opportunity to: (1) synthesize the extensive experimental data in the literature; (2) develop tools for site specific management recommendations; and (3) identify areas of research where additional information is needed. Modeling tillage systems involves modeling the soil physical, chemical and biological properties and processes and then linking them with crop growth models to simulate crop yields or environmental impacts. This paper reviews models for predicting tillage effects on state soil physical properties. Specifically, we reviewed models which predict bulk density, surface microrelief, aerodynamic roughness length, water retention characteristics, hydraulic conductivity function, thermal conductivity, volumetric heat capacity and gas diffusion coefficient. Since most of the existing models for predicting soil physical properties are developed for untilled soils, the paper outlines procedures to adapt these models to fractured and compacted zones in tilled soils. The paper also identifies specific assumptions that need both laboratory and field testing.  相似文献   


10.
土壤调节剂对土壤物理性质的改善   总被引:1,自引:0,他引:1  
ZHAO Bing-Zi  XU Fu-An 《土壤圈》1995,5(4):363-370
Effects of non-ionic polyacrylamide(PAM),anionic polyacrylamide(PHP),cationic polyacrylamide(PCAM),non-ionic polyvinylalcohol(PVA),anionic hydrolyzed polyacrylonitrile(HPAN)and polyethleneoxide(PEO)on the physical properties of three different soil stpes were studied.content of water-stable aggregates larger than 0.25mm increased to varying extents for different soils and soil conditioners,Among the six kinds of condiftioners,non-ionic polyacrylamide(PAM) was the most effective for red soil while polyethyleneoxide(PEO)the least effective for Chao soil,red soil and yellow-brown soil.Water-stable aggregates with the molecular weight of PEO within a certain range.Only evaporation rate of Chao soil decreased after aplication of PAM and HPAN to Chao soil and red soil.  相似文献   

11.
土壤物理性质对供水能力的影响   总被引:1,自引:0,他引:1  
The water-supplying capacity of two agricltural soils red soil in Jiangxi Province and meadow sol in Henan Province,was assessed mainly using physical investigations.The reticulated mottling horizon in the red soil was a horizon limiting roots distribution due to its high density and hardness in structure and low pH(pH5.05),The reistance of the red soil to drought hazard was poor because of its low water-supply capacity and poor hydraulic conductivity.The meadow soil had superior profile infiltration to that of the red soil and great available water-storage capacity,which resulted in low run-off loss,espectially in the wheat-growth season.It was difficult for water stored in the deep layers of the meadow soil to reach the surface due to the low unsaturated hydraulic conductivity of its clay-rich horizon in subsoil,Howver,water stored in deep layers was still available because the roots could extend to the deep layers due to the relatively low density in soil structure.  相似文献   

12.
The no-tillage system is perceived as having lower soil temperatures, wetter soil conditions, and greater surface penetration resistance compared with conventional and other conservation tillage systems. Concerns associated with the effect of the no-tillage system on certain soil physical properties (i.e. soil temperature, moisture, and compaction) prompted this study to evaluate the effect of an alternative tillage system, strip-tillage, on these physical properties, compared with chisel plow and no-tillage systems. The study was conducted on two Iowa State University research and demonstration farms in 2001 and 2002. One site was at the Marsden Farm near Ames, where the soils were Nicollet loam (Aquic Hapludolls) and Webster silty clay loam (Typic Haplaquolls). The second site was at the Northeast Research and Demonstration Farm near Nashua, where the soils were Kenyon loam (Typic Hapludolls) and Floyd loam (Aquic Hapludolls).Soil temperature increased in the top 5 cm under strip-tillage (1.2–1.4 °C) over no-tillage and it remained close to the chisel plow soil temperature. This increase in soil temperature contributed to an improvement in plant emergence rate index (ERI) under strip-tillage compared with no-tillage. The results show no significant differences in soil moisture status between the three tillage systems, although the strip-tillage soil profile has slightly greater moisture content than chisel plow. Moisture content through the soil profile particularly at the lower depths under all tillage treatments was greater than the plant available water (PAW). However, the changes in soil moisture storage were much greater with strip-tillage and chisel plow than no-tillage from post-emergence to preharvest at 0–30 and 0–120 cm. It was observed also that most change in soil moisture storage occurred between post-emergence and tasseling. Penetration resistance was similar for both strip-tillage and no-tillage, but commonly greater than chisel plow. In general, the findings show that strip-tillage can contribute effectively to improve plant emergence, similar to chisel plowing and conserve soil moisture effectively compared with no-tillage.  相似文献   

13.
土壤容重对土壤物理性状和小麦生长的影响   总被引:45,自引:3,他引:45  
以黑土和白浆土为试材 ,进行筒栽试验 .结果表明 ,适宜小麦生长的容重范围分别为 1 .1 5~1 .3 0 g/cm3和 0 .9~ 1 .0 5g/cm3.  相似文献   

14.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Two beet vinasse forms (fresh (BV) and composted with a cotton gin crushed compost (CV)) have been applied for 4 years on a Typic Xerofluvent under dryland conditions near to Sevilla city (Guadalquivir River Valley, Andalusia, Spain) and their effect on soil physical, chemical and biological properties and their repercussion on soil loss was studied. BV and CV were applied at rates of 5000, 7500, and 10,000 kg ha− 1 organic matter ha− 1, respectively. The application of CV to the soil resulted in improved some soil properties and soil loss decreased. However, when BV was applied soil physical properties deteriorated and soil loss increased. We think that the high amounts of monovalent cations, particularly Na+, and of fulvic acids in BV destabilized soil structure. These results show that the addition of soil organic matter not always prevents soil loss, and they suggest the preferential use of composted beet vinasse versus fresh vinasse under dryland conditions.  相似文献   

17.
Effects of charcoal production on soil physical properties in Ghana   总被引:15,自引:0,他引:15  
Charcoal production, widespread in Ghana like in other W African countries, is a major driver of land‐cover change. Effects of charcoal production on soil physical, including hydrological, properties, were studied in the forest–savannah transition zone of Ghana. Core and composite samples from 12 randomly selected sites across the width of Kotokosu watershed were taken from 0–10 cm layer at charcoal‐site soils and adjacent field soils (control). These were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture, and color. Infiltration rates, surface albedo, and soil‐surface temperature were also measured on both sites. The results showed that the saturated hydraulic conductivity of soils under charcoal kilns increased significantly (p < 0.01) from 6.1 ± 2.0 cm h–1 to 11.4 ± 5.0 cm h–1, resulting to a relative increase of 88%. Soil color became darkened under charcoal kilns with hue, value, and chroma decreasing by 8%, 20%, and 20%, respectively. Bulk density on charcoal‐site soils reduced by 9% compared to adjacent field soils. Total porosity increased from 45.7% on adjacent field soils to 50.6% on earth kilns. Surface albedo reduced by 37% on charcoal‐site soils while soil‐surface temperature increased up to 4°C on average. Higher infiltration rates were measured on charcoal‐site soils, which suggest a possible decrease in overland flow and less erosion on those kiln sites.  相似文献   

18.
Spent coffee grounds are a bio-residue studied as soil organic amendment and it has been proven that it has short-term effects on soil physical properties. However, its sequential effects on the cultivation of clayey soils are little studied. Therefore, an in vitro experiment was carried out to evaluate the effect of increasing doses (1%, 2%, 2.5%, 5%, 7.5%, 10%, 12.5% and 15%) of spent coffee grounds on the physical properties of a clayey soil in the Spanish Mediterranean area which is rich in smectites. The addition of spent coffee grounds increased water retention at −33 and −1500 kPa proportionally to the added amounts, but the increase in the wilting point was much larger than the field water capacity, decreasing the plant available water content. A non-linear influence on the aggregate size is demonstrated. It increased total porosity and consequently reduced soil bulk density. This fact was reflected in the stereomicroscopy images where an increase in the pores analysed with image analysis was observed. Furthermore, SEM images corroborate that spent coffee grounds act intensely in the short-term due to the interaction between their particles and those of clay. The 5% dose acted as a threshold dose from which the greatest effects on soil physical properties occur. In general, the use of SCG as an organic amendment is a good sustainable solution because it supposes a reuse of this bio-residue (15 million tons per year), an increase in soil organic carbon (SCG contains ≈ 50% carbon) and an improvement of the soil physical and chemical properties.  相似文献   

19.
Soil physical properties related to soil structure   总被引:3,自引:0,他引:3  
The aim of this paper is to clarify the effect of soil aggregation on soil physical and chemical properties of structured soils both on a bulk soil scale, for single aggregates, as well as for homogenized material. Aggregate formation and aggregate strength depend on swelling and shrinkage processes and on biological activity and kinds of organic exudates as well as on the intensity, number and time of swelling and drying events. Such aggregates are, most of all, more dense than the aggregated bulk soil. The intra-aggregate pore distribution consists not only of finer pores but these are also more tortuous. Thus, water fluxes in aggregated soils are mostly multidimensional and the corresponding water fluxes in the intra-aggregate pore system are much smaller. Furthermore, ion transport by mass flow as well as by diffusion are delayed, whereby the length of the flow path in such tortuous finer pores further retards chemical exchange processes. The chemical composition of the percolating soil solution differs even more from that of the corresponding homogenized material the stronger and denser the aggregates are.

The rearrangement of particles by aggregate formation also induces an increased apparent thermal diffusivity as compared with the homogenized material. The aggregate formation also affects the aeration and the gaseous composition of the intra-aggregate pore space. Depending on the kind and intensity of aggregation, the intra-aggregate pores can be completely anoxic, while the inter-aggregate pores are already completely aerated. The higher the amount of dissolved organic carbon in the percolating soil solution, the more pronounced is the difference between the gaseous composition in the inter- and in the intra-aggregate pore system.

From the mechanical point of view, the strength single aggregates, determined as the angle of internal friction and cohesion, depends on the number of contact points or the forces, which can be transmitted at each single contact point. The more structured soils are, the higher the proportion of the effective stress on the total stress is, but even in single aggregates positive pore water pressure values can be revealed. Dynamic forces e.g. due to wheeling and/or slip processes can affect the pore system as well as the composition of the soil by: (1) a rearrangement of single aggregates in the existing inter-aggregate pore system resulting in an increased bulk density and a less aerated and less rootable soil volume, (2) a complete homogenization, i.e. aggregate deterioration due to shearing. Thus, the smaller texture dependent soil strength coincides with a more intensive soil compaction due to loading. (3) Aggregate deterioration due to shearing results in a complete homogenization, if excess soil water is available owing to kneading as soon as the octahedral shear stresses and the mean normal stresses exceed the stress state defined by the Mohr-Coulomb failure line. Consequently, normal shrinkage processes start again.

Thus, the rearrangement of particles and the formation of well defined single aggregates even at the same bulk density of the bulk soil both affect, to a great extent, various ecological parameters. Environmental aspects can also be correlated, or at least explained with the processes in soils, as a major compartment of terrestial ecosystems, if the physical and chemical properties of the structure elements and their composition in the bulk soil are understood.  相似文献   


20.
PAM对土壤物理性状以及水分分布的影响   总被引:16,自引:2,他引:16  
为了研究聚丙烯酰胺(PAM)在黄土高原自然条件下对土壤物理性状和水分分布的影响,采用表面撒施的方法研究了12个不同处理小区的土壤体积质量、饱和导水率以及水分分布的变化。结果表明,在0~2 g/m2范围内添加PAM可以减小土壤体积质量增加土壤饱和导水率,但用量超过2 g/m2土壤体积质量开始增加。饱和导水率开始降低。在0~ 3 g/m2均可用二次曲线进行描述,相关系数达到95%以上。表层土壤含水量随着PAM添加量的增加而升高,20~60 cm土层土壤含水率随着PAM用量的增加出现交叉现象,60~100 cm土层随着PAM用量的增加而增加,在2 g/m2用量时达到最高,再增加PAM用量土壤含水率反而有降低趋势。100 cm以下土层变化不明显。该研究为探明PAM在黄土高原地区的适应性和大规模应用提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号