首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解灌浆期遮阴对小麦胚乳淀粉粒度分布及淀粉糊化特性的影响,研究了灌浆期对扬麦13、宁麦13和烟农19进行30%遮阴后籽粒的淀粉粒度分布与糊化特性的变化。结果表明,小麦灌浆期遮阴显著降低了<10μm的B型淀粉粒体积和表面积占比,增加了>10μm的A型淀粉粒的体积和表面积占比,其中A型淀粉粒中主要增加了10~20μm淀粉粒的体积和表面积占比;遮阴处理对淀粉粒数目分布无显著影响。遮阴处理后,峰值粘度、低谷粘度、稀懈值、最终粘度、回升值等糊化参数指标均显著降低。小麦籽粒硬度、容重、出粉率等指标也因遮阴处理而显著降低。综上所述,遮阴处理改变了小麦籽粒淀粉粒粒度分布,降低了淀粉糊化参数和加工品质。  相似文献   

2.
Genetically-diverse wheat samples from the Australian Winter Cereals Collection propagated in two environments were sequenced to identify puroindoline genotypes then the relationships between flour yield, genotype, starch granule size distribution and starch-bound puroindoline protein content were investigated. The Pina-D1a, Pinb-D1b genotype resulted in a higher average flour yield than either the Pina-D1b, Pinb-D1a or the Pina-D1a, Pinb-D1a but the ranges of flour yields for the three genotypes showed considerable overlap. For both hard wheat genotypes (Pina-D1a, Pinb-D1b or Pina-D1b, Pinb-D1a), a higher proportion of type A to type C starch granules was associated with higher flour yield and this relationship accounted for between 31% and 33% of the variation in flour yield. This result is consistent with previously reported findings for soft wheat. For the Pina-D1a, Pinb-D1b genotype, increased flour yield was also associated with a decrease in starch granule-bound puroindoline protein, which accounted for 31–35% of the variation in flour yield across the two environments. The combined effect of starch granule type and associated puroindoline content accounted for 68% of the variation in flour yield within the Pina-D1a, Pinb-D1b genotype.  相似文献   

3.
Endosperm Texture in Wheat   总被引:2,自引:0,他引:2  
One of the fundamental means of classifying wheat is through its endosperm texture. It impacts significantly on the milling process affecting among other things flour particle size and milling yield. Hardness in wheat is largely controlled by genetic factors but it can be affected by the environment and factors such as moisture, lipid, and pentosan content. The principal genetic locus controlling endosperm texture in wheat, Ha, is located on the chromosome 5D. At this locus several genes, notably the puroindolines, have been identified. Puroindolines are the major components of the 15 kDa protein band associated with starch granules that is more abundant in soft wheats than in hard. Recently the puroindolines have been shown to enhance grain hardness in rice. In this review we discuss the structure of hard and soft wheat endosperm with particular emphasis on when differences in endosperm texture can be detected in the developing seed. The role of the environment and other factors that may affect the endosperm texture is also examined together with the role of the puroindoline genes at theHa locus. Finally, we compare endosperm hardness in wheat and in barley.  相似文献   

4.
The single-kernel characterisation system (SKCS) 4100 instrument has previously been shown to provide in situ measurements of the rheological properties of the bran and endosperm layers of wheat, otherwise only possible following their isolation by dissection or machining. The current study has confirmed that endosperm maximum stress (endosperm strength (ES) as measured using the SKCS 4100 correlates highly (r=0.898r=0.898) with compressive strength (maximum stress, σmax) measurements performed on specimens of endosperm tissues of known dimensions, isolated from different subsamples of the same bulk wheat samples. This provides a means of scaling the stress axis of the crush–response profile plots to the Instron scale (MPa) so that the SKCS endosperm stress/strain curves for hard wheat, soft wheat and durum can be compared with Instron results presented in the literature. In addition, a simple method for the measurement of ES and stiffness, using the SKCS 4100, has been developed. The method has been shown to rank wheat samples according to their performance when processed on a 650 kg/h pilot mill. The criterion against which the SKCS-derived rankings were compared was the Milling Quality Index, which uses both the percentage flour extraction and Branscan speck count measurements.  相似文献   

5.
The characterisation of the wheat endosperm by mechanical tests of compression highlighted a relation between the rupture energy and the elasticity modulus for different varieties of wheat; this relation allows us to distinguish mealy and vitreous endosperms. An approach based on the micromechanics of cohesive granular materials is used to analyse these experimental results. A geometrical model of the wheat endosperm made of grains linked by cohesive bonds is proposed. We introduced two parameters, the first one α represents the percentage of active bonds (bonds where the stiffness and strength are non-zero), and the second one β represents the threshold of the bond's rupture. The parameter β can be related to the cross-section of the bond. This model successfully describes the mechanical tests on the wheat endosperm. The comparison with the experimental tests makes it possible to clearly differentiate vitreous wheats and mealy wheats and then attribute this property to the parameter β. The model shows the same tendency as regards the evolution of the rupture energy and the elastic modulus with the parameter α. The modelling of endosperm by the mechanics of cohesive granular media provides a new theoretical framework to interpret the rheology of endosperm. This approach allows us to connect this rheology to the mechanical actions at the scale of the granules.  相似文献   

6.
Physico-chemical properties of bread baked by partially replacing normal wheat (Triticum aestivum L.) flour (15, 30, and 45%) with two hard waxy wheat flours were investigated. Substitution with waxy wheat flour resulted in higher loaf volume and softer loaves. However, substitution at >30% resulted in excessive post-bake shrinkage and a ‘key-hole’ shape with an open crumb structure. Bread crumb microstructure indicated a loss of starch granule rigidity and fusing of starch granules. The cells in the interior of the bread did not become gas-continuous and as a result, shrunk as the loaf cooled. Soluble starch content was significantly higher in bread crumb containing waxy wheat flour than in control bread. Debranching studies indicated that the soluble starch in bread made with 30-45% hard waxy wheat flour was mostly amylopectin. Incorporation of waxy wheat flour resulted in softer bread immediately after baking but did not retard staling upon storage.  相似文献   

7.
Mature and developing oat (Avena sativa) grains were sectioned and image analysis methods used to estimate the starch granule-size distribution and morphology in endosperm cells. This showed that oat endosperm cells contain two types of starch granule: compound starch granules such as those seen in rice endosperm and in most other grasses; and simple granules similar to the B-type starch granules seen in the endosperm of Triticeae species such as wheat (Triticum aestivum). The simple granules in oats are similar in size and relative abundance to B-type granules in Triticeae suggesting that they may share a common evolutionary origin. However, there is a fundamental difference between oats and Triticeae in the timing of granule initiation during grain development. In Triticeae, the B-type granules initiate several days after the A-type granules whereas in oats, both the simple and compound granule types initiate at the same time, in early grain development.  相似文献   

8.
Endosperm texture is an important factor governing the end-product quality of cereals. The texture of wheat (Triticum aestivum L.) endosperm is controlled by puroindoline a and b genes which are both absent in rice (Oryza sativa L.). It has been reported that the endosperm texture of rice can be modified by puroindoline genes. The mechanism, however, by which puroindolines affect the ultrastructure of rice endosperm cells remains to be investigated. In this study, we observed the ultrastructure of endosperm cells and the morphology of isolated starch granules of the transgenic rice expressing the puroindoline b gene. SEM and TEM observations indicated that compound starch granules were embedded within the matrix material in non-transgenic rice, Nipponbare, whereas they were surrounded by spaces in the transgenic rice. The morphology and size of each starch granule were not different between non-transgenic and the transgenic rice. However, the transgenic rice flour showed smaller particle size, higher starch damage, and lower viscosity during gelatinization than that of non-transgenic rice. These results confirm that puroindoline b reduces the grain hardness in rice. Moreover, the results also suggest that puroindoline b functions at the surface of compound starch granules, and not on polygonal starch granules in rice endosperm.  相似文献   

9.
山西小麦品种籽粒硬度与主要品质性状研究   总被引:1,自引:0,他引:1  
为明确山西省近十年育成小麦新品种的籽粒硬度和品质状况,利用单籽粒谷物特性测定仪(SKCS)、DA7200多功能近红外分析仪,对来自山西省近十年审定的56个小麦新品种的籽粒硬度、蛋白质含量、出粉率等指标进行了检测和分析。结果发现,山西省近十年审定的小麦品种中,硬质麦比例较高,为78%,混合型麦和软质麦比例较低,分别为12%和8%;硬度指数范围较宽,为16.33~78.93。经相关分析,小麦籽粒硬度指数与被测品质性状均呈正相关关系,其中,与出粉率、吸水率、最大拉伸阻力均呈极显著正相关(P0.01)。硬质麦的蛋白质含量、湿面筋含量、出粉率、沉降值等品质参数均显著高于混合型麦和软质麦。混合型麦的蛋白质含量、湿面筋含量、出粉率、沉降值等品质参数略高于软质麦。  相似文献   

10.
Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m−2 for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m−2 for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy–time curves of loading–unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.  相似文献   

11.
Wheat (Triticum aestivum L.) kernel hardness is a major quality characteristic, which has been ascribed to the presence of puroindolines a and b. These proteins occur in higher levels at the surface of water-washed starch granules from soft wheat cultivars than at that of starch from hard wheat cultivars. In the present study, prime starch was isolated from flour from soft wheat (cultivar Claire) using a dough ball or batter based separation method. Starch isolated with the dough ball method contained lower levels of puroindolines, as well as of other starch granule associated proteins and lipids than that isolated with the batter method. Similar patterns of puroindoline and lipid levels after starch isolation can presumably be related to (polar) lipid binding by puroindolines. Both isolated starch fractions showed comparable differential scanning calorimetry thermograms, whereas higher levels of starch surface associated components restricted starch swelling. Necessary controls demonstrated that the observed differences did not arise from artefacts associated with hydration, fractionation or freeze-drying in the experimental protocols. Apparently, proteins and lipids at the starch granule surface impact water absorption and, as such, starch swelling, but they do not affect starch granule internal phenomena such as melting of the crystalline amylopectin chains.  相似文献   

12.
Secondary field emission scanning electron microscopy (FE SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate native near-isogenic soft and hard wheat kernels and their roller milled flours. FE SEM images of flat-polished interior endosperm indicated distinct differences between soft and hard wheats with less internal continuity in the soft wheat, whereas individual starch granules were much less evident in the hard kernel due to a more continuous matrix. AFM images revealed two different microstructures. The interior of the hard kernel had a granular texture with distinct individual spheroid features of 10–50 nm while the images obtained for the soft kernel revealed less distinct small grains and more larger features, possibly micro-structural features of starch granules. Raman spectra resolved identical distinct frequencies for both kernel types with slightly different intensities between types. Finally, the chemical surface compositions of flour for these two types of kernels obtained by XPS provided subtle insight into the differences between soft and hard wheat kernels. These combined advanced microscopic and spectroscopic analyses provide additional insight into the differences between the soft and hard wheat kernels.  相似文献   

13.
The water adsorption properties of hard and soft wheat flours and flour components (starch, damaged starch, gluten, soluble pentosans, and insoluble pentosans) were determined at 25 °C using a controlled atmosphere microbalance. At different levels of relative humidity (from 10% to 95%), changes in sample mass (i.e., water gain) were continuously measured versus time and described using exponential models (R2≥0·994). Water adsorption isotherms were constructed for wheat flours and flour components and described using Guggenheim-Anderson-de Boer models (R2≥0·997). It was not possible to distinguish between the selected hard and soft wheat flours by their isotherms. The water-soluble pentosans had the highest water adsorption capacity. The theoretical distribution of water between the flour components (calculated using the Guggenheim-Anderson-de Boer parameters) was starch, 88%; gluten, 10%; and pentosans, 2%.  相似文献   

14.
小麦胚乳A、B型淀粉粒分离纯化方法研究   总被引:1,自引:0,他引:1  
为了能够准确研究小麦籽粒胚乳中A、B型淀粉粒的形成机理、化学组分及理化特性,对前人分离提纯A、B型淀粉粒的方法进行改进,提出了适于小麦A、B型淀粉粒分离提纯的常量法和微量法。用4个不同淀粉含量类型的小麦品种籽粒对此方法进行验证,结果表明4个品种A、B型淀粉粒在常量法中的分离纯度分别达到79.46%~85.23%和90.27%~96.43%,在微量法中的分离纯度分别达到92.68%~96.70%和96.48%~99.00%。在常量法和微量法中,A型淀粉粒的分离纯度与品种淀粉含量成正相关, B型淀粉粒分离纯度与品种淀粉含量成负相关;而A、B型淀粉粒在两种方法中的分离产率与品种淀粉含量没有显著关系。  相似文献   

15.
Hard and soft wheat flours, which were used in the study, resulted in good and poor quality chapatis respectively. Gluten was isolated and interchanged among the two whole wheat flours and studied by scanning electron microscopy for its influence on structural characteristics of dough and its relation to chapati-making quality. Microscopic observations clearly indicated that larger gluten strands covered starch granules in hard wheat flour dough, while gluten was short and starch granules exposed in dough prepared from soft wheat flour. Greater film forming ability of gluten in hard wheat flour dough manifested in long and bulky starch strands interwoven with protein matrix in its chapati crumb. Higher moisture retention and starch gelatinization as a consequence of greater film forming ability of gluten in hard wheat flour resulted in pliable and soft textured chapati.  相似文献   

16.
为了明确长江中下游麦区小麦籽粒硬度及puroindoline基因型的分布,以该麦区105份小麦育成品种为材料,利用单籽粒硬度仪(SKCS)测定其籽粒硬度,利用分子标记检测和基因序列分析鉴定puroindoline基因的等位变异。结果表明,在长江中下游麦区历年育成的小麦品种中软质麦比例较高,占52.4%,硬质麦和混合麦分别占38.1%和9.5%;硬质麦和混合麦中存在Pinb-D1b、Pina-D1b和Pinb-D1p三种变异类型,突变频率分别为29.5%、10.5%和3.8%。  相似文献   

17.
A total of 169 wheat (Triticum aestivum L.) varieties (landraces and cultivars) were used to asses the relationship between Puroindoline D1 alleles and Puroindoline b-B2 variants and grain hardness, other grain traits, yield components, and flag leaf size. Results indicated that the average SKCS hardness of Pinb-B2v3 varieties was significantly greater than that of Pinb-B2v2 varieties within the soft Puroindoline D1 haplotype sub-group. Conversely, no statistically significant difference was obtained for SKCS hardness between varieties with the Pinb-B2v3 vs. Pinb-B2v2 alleles within the two hard Puroindoline D1 haplotypes (Pinb-D1b and Pinb-D1p sub-groups). Therefore, the Puroindoline b-B2 gene may have a bigger impact on soft wheat varieties than hard. Across all varieties, thousand-kernel weight, grain weight per spike, grain diameter, grain number per spike, flag leaf width and area of Pinb-B2v3 varieties were significantly greater than those possessing Pinb-B2v2. These results indicated that the Pinb-B2v3 allele was associated with preferable grain yield traits compared to the Pinb-B2v2 allele in bread wheat. This study provides evocative information for better understanding the molecular and genetic basis of wheat grain yield.  相似文献   

18.
小麦籽粒发育时期Puroindolines蛋白与硬度的关系   总被引:1,自引:0,他引:1  
为探讨Puroindolines蛋白的表达特点与籽粒硬度的关系,采用改进的SDS-PAGE凝胶分析了不同硬度小麦品种的籽粒在各个发育时期Puroindolines蛋白的表达.结果表明,不同硬度的小麦籽粒中总Puroindolines(PinA和PinB)蛋白的表达量差异不大,但与胚乳淀粉颗粒结合的Puroindolines蛋白量差异非常明显:在籽粒发育的不同时期,软质小麦籽粒淀粉粒表面结合的Puroindolines蛋白量显著高于硬质小麦;基因型同为野生型但硬度有差异的品种,籽粒较软的材料其淀粉粒表面结合的Puroindolines蛋白量也明显高于较硬的材料,说明该蛋白的结合特性是决定籽粒硬度的直接原因.结果还表明,胚乳中水溶性戊聚糖与籽粒硬度关系密切.  相似文献   

19.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

20.
为提高小麦品种的面粉白度,以来自不同种植区的216个小麦品种(系)为材料,研究了小麦面粉白度的分布规律及与其他品质指标的相关性,并初步探讨了储藏时间对面粉白度的影响。结果表明,面粉白度在小麦品种(系)间存在极显著差异(P0.01),年份间极显著正相关;参试材料的面粉白度平均为72.9,变幅为54.1~80.1,高于80的品种较少,大多数品种(系)的白度值在70~75之间。来源于西南冬麦区的小麦品种(系)的面粉白度值最高,显著高于黄淮冬麦区和北方冬麦区(P0.05),长江中下游冬麦区的白度值也较高;国外引进品种的白度值普遍较低,平均值为69.53;软麦的白度值显著高于硬麦(P0.05)。面粉白度与出粉率、籽粒硬度、蛋白含量和粉质参数等指标均呈负相关,尤其与硬度的负相关性最强(r=-0.798)。储藏一段时间可略微增加面粉白度,但增幅不明显。同时,筛选出一批优质高白度材料,可作为培育强筋高白度小麦品种的优良亲本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号