首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Summary Field experiments were conducted during 1985 and 1986 to examine the effect of Azotobacter chroococcum on the grain yield of maize. Application of 40 kg N ha–1 plus A. chroococcum caused a significant increase in maize yield. Azotobacter inoculation was more efficient at lower doses (40 kg N ha–1) than at high doses (80 kg N ha–1) of urea.  相似文献   

2.
Summary Pot experiments with oats were carried out to study the effect of Azospirillum brasilense Sp 7 and Azotobacter chroococcum 94K on the yield of plants, the N content of soil and the 14N balance. The plants were grown on gray forest soil under irrigation with deionized water and application of 15N-labelled fertilizer at a rate of 4 mg N 100 g-1 soil. Inoculation of plants with Azospirillum spp. and Azotobacter spp. failed to increase the plant yield. However, the increase in total N in the soil at the end of the experiment and the positive 14N balance in the soil-plant system due to increased nitrogenase activity in the rhizosphere were statistically significant. The amount of N accumulated in the soil was comparable with the rate of N applied as fertilizer.  相似文献   

3.
为了揭示Pb胁迫对间作和单作的超累积植物和作物根系分泌低分子有机酸的影响,研究设置400 mg·L?1Pb胁迫,采用水培曝气法试验,以玉米和小花南芥单作为对照处理,研究Pb胁迫下玉米和小花南芥间作对植物根系形态、根系分泌有机酸及Pb吸收的影响。结果表明:与单作相比,间作小花南芥情况下,玉米根系分泌物检测到乳酸;玉米分根条数、根表面积和根密度与单作相比分别增加60%、15%和42%,地下部和地上部干重生物量分别增加108%和75%,玉米地下部Pb含量下降44%;与单作相比,间作玉米条件下,小花南芥根系分泌物检测到乙酸和乳酸,小花南芥根系分泌物量与单作相比增加103%~1 700%,小花南芥地下部和地上部Pb累积量分别比单作增加49%和75%,转运系数增加22%。相关分析结果表明,单作小花南芥只有地上部Pb累积量与草酸显著相关,而间作小花南芥地下部和地上部Pb累积量与草酸、柠檬酸和苹果酸显著相关。研究表明超富集植物小花南芥与玉米间作体系,根系分泌的有机酸改变了Pb在小花南芥和玉米体内的累积特征,促进超累积植物小花南芥累积Pb,减少农作物玉米植株体内Pb含量。Pb胁迫下超累积植物小花南芥与玉米间作是一种可行的修复模式。  相似文献   

4.
Natural and mutant strains of A. chroococcum were isolated from Indian soils. Their ability to dissolve phosphate and their phytohormone production were tested under in vitro conditions. In addition the effect of bacterial inoculation of Azotobacter on N, P, K uptake by three P responsive wheat genotypes (Triticum aestivum L.) under greenhouse conditions at five nutrient levels (Control, 90 kg N ha—1, 90 kg N + 26 kg P ha—1, 120 kg N ha—1 and 120 kg N + 26 kg P ha—1) was studied. In vitro phosphate solubilization and growth hormone production by mutant strains was more than by the soil isolates. Inoculation of wheat varieties with the soil isolates and mutant strains of A. chroococcum showed greater NPK uptakes as compared with parent soil isolates. Mutant strains M15 and M37 were proved to be the most effective for all three wheat varieties with regard to NPK uptake as well as root biomass production under greenhouse conditions.  相似文献   

5.
Plant growth promoting rhizobacteria (PGPR) enhance the plant growth directly by assisting in nutrient acquisition and modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens. The aim of this study was to select effective PGPR from a series of indigenous bacterial isolates by plant growth promotion and antifungal activity assays. This study confirmed that most of the isolates from maize rhizosphere were positive for PGPR properties by in vitro tests. Azotobacter and Bacillus isolates were better phosphate solubilizers and producers of lytic enzymes, hydrocyanic acid (HCN), and siderophores than Pseudomonas. Production of indole-3-acetic acid (IAA) and antifungal activity were the highest in Azotobacter, followed by Bacillus and Pseudomonas. The most effective Azotobacter isolates (Azt3, Azt6, Azt12) and Bacillus isolates (Bac10, Bac16) could be used as PGPR agents for improving maize productivity. Further selection of isolates will be necessary to determine their efficiency in different soils.  相似文献   

6.
Summary N2 fixation (acetylene reduction assay) by phylloplane microorganisms was measured in dominant and co-dominant plant species growing in a tropical rain forest. No significant acetylene reduction was recorded with intact leaf samples. Azotobacter sp., Beijerinckia sp., Derxia sp., and Klebsiella pneumoniae were isolated as phylloplane N2-fixing bacteria. Azospirillum lipoferum was only isolated from soil samples containing the roots of Poaceae. Nitrogenase activity was recorded in culture derived from the roots and rhizosphere soil samples, although low acetylene reduction activity indicates that these associations did not provide large amounts of N to the systems studied.  相似文献   

7.
Pure cultures of the bacterium Azotobacter chroococcum, and mixed cultures of A. chroococcum and the ciliate Colpoda steini, were incubated for 35 days in soil samples, which were either saturated or subjected to a constant suction (either pF 1.5, 2.0, or 2.7). Previous to inoculation, the soil samples had been sterilized by y-irradiation (5 Mrad) and saturated with a solution of glucose and mineral salts. In the samples maintained at pF 2.7, the Colpoda population decreased after inoculation. In the other samples the ciliate populations increased after inoculation, and the duration of each growth period was related to the degree of suction applied. The longer growth periods were associated with the smaller suctions. Twenty-eight days after inoculation, saturated soil contained the largest ciliate population. Large numbers of Azotobacter cells were present in all samples, although there was a decline in numbers with time. Azotobacter populations in the samples at pF 2.7 did not increase after inoculation, and smaller Azotobacter populations were often present in the mixed compared with the pure cultures at the same pF value.  相似文献   

8.
Summary A nitrate-respiring strain, a denitrifying strain, and a non-nitrogen-fixing strain of Azospirillum brasilense were compared for their effect on the growth of pearl millet (Pennisetum americanum), wheat (Triticum aestivum) and maize (Zea mays) under temperate conditions in nitrogen-limited pot cultures. Increases in yield of Z. mays shoots occurred with all three strains when inoculation coincided with the addition of low levels of combined nitrogen. The inoculation of A. brasilense did not show any effect on the yield of P. americanum and T. aestivum. Increased numbers of A. brasilense became associated with Z. mays roots following the addition of low levels of combined nitrogen. Low and very variable rates of acetylene reduction activity were observed from excised roots of inoculated Z. mays plants without preincubation. Results indicate that inoculation of cereals with A. brasilense under temperate conditions has only a limited effect on plant growth.  相似文献   

9.
Sustainable cropping systems rely on a minimum of external inputs. In these systems N is largely acquired in animal manures and leguminous green manures. Little is known of how these organic forms of N fertilizer influence the presence and activity of free-living N2-fixing bacteria. High concentrations of inorganic N in soil inhibit N2-fixation in cyanobacteria and Azotobacter spp. It is likely that manure and fertilizer applications would result in concentrations of inorganic N capable of inhibiting N2 fixation and, ultimately, the presence of these organisms. We investigated the effect of synthetic and organic N fertilizer sources on the populations and N2-fixation potential of free-living N2-fixing bacteria in the Farming Systems Trial at the Rodale Research Institute. Field plots received the following N treatments prior to corn (Zea mays L.) production: (1) Legume rotations and green manures supplying about 165 kg N ha-1; (2) beef cattle manure applied at a rate of 220 kg N ha-1 (plus 60 kg N ha-1 from 1994 hay plow-down); or (3) fertilizer N (urea and NH4NO3) applied at a rate of 145 kg N ha-1. Soil samples were collected at two depths from corn plots four times during the growing season, and analyzed for soil moisture, soil pH, numbers of N2-fixing cyanobacteria and Azotobacter spp., extractable NH inf4 sup+ and NO inf3 sup- , and potentially mineralizable N. Soil samples collected in mid-July were analyzed for nitrogenase activity (by C2H2 reduction) and total C and N. Populations of Azotobacter spp. and cyanobacteria were influenced only slightly by treatment; however, cyanobacteria species composition was notably influenced by treatment. Nitrogenase activity in surface soils was greatest in legume-N plots and in subsurface plots levels were greatest in fertilizer-N plots. Populations and activity of free-living N-fixing bacteria appeared to be somewhat reduced in all plots as a result of low soil pH levels and high concentrations of inorganic N across all treatments. Annual applications of N to all plots resulted in high levels of potentially mineralizable N that in turn may have reduced non-symbiotic N2-fixation in all plots.  相似文献   

10.
农田改为农林(草)复合系统对红壤CO2和N2O排放的影响   总被引:1,自引:0,他引:1  
以鄂南玉米地、紫穗槐/玉米地、香根草/玉米地、紫穗槐林地、香根草草地与撂荒地6种土地利用类型为研究对象,利用静态箱法,对夏玉米生长期间土壤CO2和N2O通量及影响因子进行了测定,研究我国北亚热带丘陵红壤区农田改变为林(草)地和农林(草)复合系统后土壤CO2和N2O排放特征。研究结果表明:(1)土地利用方式改变后,撂荒地土壤CO2排放量明显低于其他5种土地利用类型,但紫穗槐/玉米地、单作玉米地、香根草/玉米地、紫穗槐林地、香根草草地5种土地利用类型之间土壤CO2排放量差异不显著。(2)玉米生长期间,6种不同土地利用方式下,土壤N2O排放总量从高到低依次为紫穗槐/玉米地(508 g·hm-2·a-1)、紫穗槐林地(470 g·hm-2·a-1)、撂荒地(390 g·hm-2·a-1)、香根草/玉米地(373 g·hm-2·a-1)、香根草草地(372 g·hm-2·a-1)、单作玉米地(285 g·hm-2·a-1)。(3)土壤CO2通量与土壤有机碳、土壤微生物生物量碳和土壤含水量无显著相关关系;土壤N2O通量与土壤氮素净矿化率呈显著线性相关,但与土壤无机氮和土壤含水量无显著相关关系。农田改变为农林(草)复合系统可能潜在地增加土壤CO2和N2O排放;农田改变为林(草)地可能潜在地减少土壤CO2排放,增加土壤N2O排放。  相似文献   

11.
Plant-growth promoting rhizobacteria (PGPR) play an important role in plant health and soil fertility. The experiment was conducted as factorial experiment with two factors of Azospirillum and Azotobacter. The bacterial strains were Azospirillum lipoferum s-21, A. brasilense DSM 1690, A. lipoferum DSM 1691, Azotobacter chroococcum s-5, and A. chroococcum DSM 2286. The results indicated that growth promotion by PGPR appears from early stages of growth, 45 days after inoculation (DAI). Beneficial effects of bacterial inoculation on ear growth were observed after 75 DAI. Inoculation with PGPR increased dry weights of leaf, stem, and grain and hence total biomass sampled at 90, 105, and 120 (harvest time) DAI. The greatest grain weight was produced by Azospirillum s-21 inoculation. Dual inoculation with Azotobacter s-5 + Azospirillum s-21 significantly increased total dry weight up to 115%. Results of this study showed that leaf area index and crop growth index were significantly affected by bacterial treatments.  相似文献   

12.
紫云英还田量对烟田土壤微生物及酶的影响   总被引:4,自引:0,他引:4  
为在翻耕条件下合理施用紫云英,保障农业的可持续性发展,定位试验研究了15000kg·hm-2、22500kg·hm-2、30000kg·hm-2紫云英还田和22500kg·hm-2紫云英还田减施化肥(施肥时扣除紫云英中氮、磷、钾)及紫云英不还田5个处理对烟田土壤微生物数量、微生物活度、酶的影响。结果表明:烟草生育期内,不同处理好气性细菌数量呈前期均迅速上升、中期均稍有上升,但后期各有升降的趋势;烟草生长早期,紫云英还田减施化肥能增加好气性细菌数量。放线菌数量烟草生育前期略有下降,中期有所回升,后期又缓慢下降;烟草生长早期,紫云英还田能增加放线菌数量;整个烟草生育期,紫云英还田减施化肥可减少放线菌数量。真菌呈现烟草生育前中期迅速上升,后期缓慢下降的趋势;相对较少的紫云英还田量对土壤真菌数量增长的刺激作用较为明显。微生物活度呈烟草生育前期下降、中期趋于平稳、后期迅速升高达到最高点的趋势;烟草成熟期,紫云英还田的微生物活度明显高于不还田处理,增加紫云英还田量,微生物活度增加,但紫云英还田减施化肥会降低微生物活度。土壤纤维素酶活性以烟草旺长期为界点,表现出前期增加、后期下降的特点;烟草生长后期,紫云英还田土壤的纤维素酶活性高于对照土壤。土壤脲酶活性呈先快速下降,再缓慢上升,最后再快速上升趋势。土壤蛋白酶活性呈烟草生育前期下降,后期缓慢上升的特点;土壤蛋白酶活性与紫云英施用量呈正相关。过氧化氢酶活性在烟草各生育期的变化不大。土壤生物学评价发现,22500kg·hm-2紫云英翻耕还田栽培烟草较佳。  相似文献   

13.
Soil heterotrophic respiration during decomposition of carbon (C)-rich organic matter plays a vital role in sustaining soil fertility. However, it remains poorly understood whether dinitrogen (N2) fixation occurs in support of soil heterotrophic respiration. In this study, 15N2-tracing indicated that strong N2 fixation occurred during heterotrophic respiration of carbon-rich glucose. Soil organic 15N increased from 0.37 atom% to 2.50 atom% under aerobic conditions and to 4.23 atom% under anaerobic conditions, while the concomitant CO2 flux increased by 12.0-fold under aerobic conditions and 5.18-fold under anaerobic conditions. Soil N2 fixation was completely absent in soils replete with inorganic N, although soil N bioavailability did not alter soil respiration. High-throughput sequencing of the 16S rRNA gene further indicated that: i) under aerobic conditions, only 15.2% of soil microbiome responded positively to glucose addition, and these responses were significantly associated with soil respiration and N2 fixation and ii) under anaerobic conditions, the percentage of responses was even lower at 5.70%. Intriguingly, more than 95% of these responses were originally rare with < 0.5% relative abundance in background soils, including typical N2-fixing heterotrophs such as Azotobacter and Clostridium and well-recognized non-N2-fixing heterotrophs such as Sporosarcina, Agromyces, and Sedimentibacter. These results suggest that only a small portion of the soil microbiome could respond quickly to the amendment of readily accessible organic C in a fluvo-aquic soil and highlighted that rare phylotypes might have played more important roles than previously appreciated in catalyzing soil C and nitrogen turnovers. Our study indicates that N2 fixation could be closely associated with microbial turnover of soil organic C when available in excess.  相似文献   

14.
Summary We investigated the influence of light intensity and pH on growth and acetylene reduction in three strains of Azolla filiculoides and one strain of A. pinnata cultivated under ambient conditions in Naples, Italy. A. pinnata showed maximum growth and acetylene reduction activity at 65% of natural light intensity (82 Klux) and at pH 5–7. In contrast, three A. filiculoides strains showed maximum values in a wider range of light intensity (50–100%) and pH (5–9). All optimal growth conditions of light intensity and pH were obtained from the determination of doubling time for dry and fresh weight increases. The lowest doubling time for all strains was in the range 2.7–3.3 days. Under these optimal conditions, the acetylene reduction activity rates were 46 nmol ethylene h–1 mg–1 dry weight for two strains of A. filiculoides from California, and 90 nmol for A. filiculoides from Naples and A. pinnata from Tancheng, Peoples Republic of China. These values correspond to those reported for strains of A. filiculoides and A. pinnata cultivated in areas outside Italy where the use of Azolla as biofertilizer has resulted in increased crop production. Therefore, the strains studied here may have a similar potential in Southern Italy as a source of biomass, dry matter and nitrogenous compounds.Research work supported by CNR, Italy. Special grant I. P. R. A. Sub-project 1. Paper No. 814  相似文献   

15.
蒸散发(ET)是陆地水循环过程的重要组成部分,同时也是区域能量平衡以及水量平衡的关键环节,精确估算ET,对于提高水分利用效率以及优化区域用水结构具有重要意义。本文利用黑河重大计划观测数据,对比了考虑CO_2浓度和不考虑CO_2浓度对玉米冠层影响的冠层阻力模型,分别将其耦合到双源的Shuttleworth-Wallace(S-W)模型中,并利用这两种模型分时段对玉米整个生育期内半小时尺度上的ET进行模拟,利用涡度相关实测数据对模型进行验证,最后分别对影响玉米冠层阻力的气象要素和影响ET的阻力参数进行敏感性分析,探寻大气CO_2浓度改变条件下黑河中游绿洲区玉米不同生长阶段的农田耗水规律。结果表明:本文所修正的考虑CO_2浓度对玉米冠层影响的冠层阻力模型耦合到S-W模型后,能够较精准地模拟玉米整个生育期不同生长阶段半小时尺度上农田耗水过程。敏感性分析表明:各生长阶段冠层阻力(r_s~c)和冠层面高度到参考面高度间的空气动力阻力(r_a~a)对ET的影响最为强烈,其他阻力参数对ET的影响不明显,ET的变化程度随着r_s~c和r_a~a的增大而减小。本文所修正的考虑CO_2浓度影响的分时段双源模型能够精准地模拟玉米整个生育期各生长阶段的ET,可为种植结构调整和土地利用方式改变以及CO_2浓度变化环境下的农田蒸散研究提供参考。  相似文献   

16.
氧化亚氮(N2O)是一种在大气存留时间长且破坏臭氧层的重要温室气体。农业土壤源N2O是其重要来源,具有产生路径广、影响因素多、调控复杂等特点。减少农业土壤N2O排放一直是研究的热点。含有N2O还原酶的N2O还原细菌能将N2O还原为氮气(N2),这是目前已知的微生物还原N2O唯一的汇。直接应用微生物减少农业土壤N2O排放是一种新兴的减排技术。本文详细阐述了农业土壤N2O的生物源与汇,重点论述了N2O减排微生物的筛选及应用策略。综述了微生物介导的农业土壤N2O减排的两种微生物生态学机制:一种是利用含有nos Z基因的N2O还原细菌直接减少N2O排放,另一种是利用能改变N2O还原细菌群落组成和丰度及其活性的植物根际促生菌间接减少N2O排放。最后,讨论了影响微生物介导的...  相似文献   

17.
Summary Algal populations were quantified (as colony-forming units [CFU] per square centimetre) in 102 samples of rice soils from the Philippines, India, Malaysia and Portugal, and in 22 samples of soil-based inocula from four countries. Heterocystous blue-green algae (BGA) were present in all samples. Nostoc was the dominant genus in most samples, followed by Anabaena and Calothrix. In soils, heterocystous BGA occurred at densities ranging from 1.0 × 102 to 8.0 × 106 CFU/cm2 (median 6.4 × 104) and comprised, on average, 9% of the total CFU of algae. Their abundance was positively correlated with the pH and the available P content of the soils. In soil-based inocula, heterocystous BGA occurred at densities ranging from 4.6 × 104 to 2.8 × 107 CFU/g dw (dry weight), comprising only a moderate fraction (average 13%) of the total algae. In most soils, the density of indigenous N2-fixing BGA was usually higher than that attained by applying recommended rates of soil-based inoculum. Whereas research on the practical utilization of BGA has been mostly directed towards inoculation with foreign strains, our results suggest that attention should also be given to agricultural practices that enhance the growth of indigenous strains already adapted to local environmental conditions.Maître de Recherches ORSTOM (France), Visiting Scientist at IRRI  相似文献   

18.
Summary We studied the dominant diazotrophs associated with maize roots and rhizosphere soil originating from three different locations in France. An aseptically grown maize plantlet, the spermosphere model, was used to isolate N2-fixing (acetylene-reducing) bacteria. Bacillus circulans was the dominant N2-fixing bacterium in the rhizosphere of maize-growing soils from Ramonville and Trogny, but was not found in maize-growing sandy soil from Pissos. In the latter soil, Enterobacter cloacae, Klebsiella terrigena, and Pseudomonas sp. were the most abundant diazotrophs. Azospirillum sp., which has been frequently reported as an important diazotroph accociated with the maize rhizosphere, was not isolated from any of these soils. The strains were compared for their acetylene-reducing activity in the spermosphere model. The Bacillus circulans strains, which were more frequently isolated, also exhibited significantly greater acetylene-reducing activity (3100 nmol ethylene day-1 plant-1) than the Enterobacteriaceae strains (180 nmol ethylene day-1 plant-1). This work indicates for the first time that Bacillus circulans is an important maizerhizosphere-associated bacterium and a potential plant growth-promoting rhizobacterium.  相似文献   

19.
A hydroponics study was carried out to evaluate the effect of three plant growth promoting rhizobacteria (PGPR) namely, Bacillus mucilaginosus, Azotobacter chroococcum, and Rhizobium spp. on their ability to mobilize potassium from waste mica using maize and wheat as the test crops under a phytotron growth chamber. Results revealed that PGPR significantly improved the assimilation of potassium by both maize and wheat, where waste mica was the sole source of potassium. This was translated into higher biomass accumulation, potassium content and uptake by plants as well as chlorophyll and crude protein content in plant tissue. Among the rhizobacteria, Bacillus mucilaginosus resulted in significantly higher mobilization of potassium than Azotobacter chroococcum and Rhizobium inoculation. Overall, inoculation of maize and wheat plants with these bacteria could be used to mobilize potassium from waste mica, which in turn could be used as a source of potassium for plant growth.  相似文献   

20.
Genetically modified (GM) crops may affect earthworms either directly through the plant, its root exudates and litter, or indirectly through the agricultural management changes that are associated with GM plant production. In order to investigate such possible effects, we established two field studies of Bacillus thuringiensis (Bt) maize and a glufosinate ammonium tolerant maize and included a reduced tillage (RT) treatment and a conventional tillage (CT) treatment as examples of a likely concomitant change in the agricultural practise. At a French study site at Varois, (Bourgogne), a field grown with the Bt-toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), 1 year of Bt maize was followed by 2 years of herbicide tolerant (HT) maize. At the French study site, the most prominent effects observed were due to the tillage method where RT significantly reduced the earthworm populations to levels about half of CT. At the Danish study site effects of CT complied with known reduction of anecic earthworms due to this technique and likewise effects of RT were observed for endogeic earthworms. Earthworm populations were diminished with the HT crop, probably due to exposure to the herbicide Basta® during the two consecutive autumn seasons. This study confirms the importance of including the tillage techniques and pesticide usage when evaluating the environmental effects of new agricultural technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号