首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test relationships between net N-mineralization, organic matter and soil organisms, we combined micromorphology with laboratory incubation experiments over a soil gradient. Microbial biomass N generally increased with pH, and from sandy to loamy soil, but net N-mineralization showed the opposite, and was highest in acid, sandy soil. Twenty-two micromorphological characteristics were analyzed with principal component analysis. PC1 had high eigenvalue (0.70), and clearly separated fungi from earthworms, microarthropods and bacteria. PC2 was less important (0.15). Organic layer and sand content clearly correlated with the fungi-end of PC1, but pH and C-content of the Ah with the opposite. Microbial N also correlated with the earthworm–bacteria end, but net N-mineralization did not. Efficiency of N-mineralization per unit microbe even correlated with the fungi end of PC1, in both organic layer and mineral topsoil. The results support the hypothesis that high (or low) litter turnover and biological activity can be counteracted by high (or low) microbial N-demand.  相似文献   

2.
We investigated the influence of tree canopy composition and structure on the spatial and temporal variability of (i) concentrations of inorganic N (NH4+ and NO3) and (ii) net N-mineralization and net nitrification, within the temperate forest floor. We compared a pure European beech stand (PS) with a mixed beech-hornbeam one (MS). Three sampling areas were chosen in each stand. Within the PS, the tree locations represented a decreasing gradient of light intensity reaching the forest floor. Within the MS they represented a gradient in the amount of hornbeam leaves present in the litter. In the field NH4+ and NO3 concentrations were measured in the upper mineral soil (UMS) and the overlying organic layers (OL and OF+OH). Field exposures using buried bags were carried out on UMS over 1 year to measure in situ net N-mineralization and net nitrification. Potential net N-mineralization and net nitrification were investigated in summer with UMS, OL and OF+OH incubated at 28 °C for 28 days in the laboratory. We hypothesize that with the presence of a mull-forming species (hornbeam) within a stand dominated by a moder-forming one (European beech), (i) the spatial and (ii) temporal patterns of soil inorganic N concentrations, net N-mineralization and net nitrification would be different in the two stands. Our main results show that tree species composition has an influence on both spatial and temporal patterns of nitrification. The PS exhibited its highest peaks of UMS NO3 concentration and net nitrification in spring and early summer while they were highest in the MS in winter. Furthermore, PS exhibited a higher rate of net nitrification than MS. We discuss this unexpected result and suggest that dissolved organic C may be the controlling factor for net nitrification in the MS.  相似文献   

3.
Litter decomposition is an important process of C and N cycling in the soil. Variation in the response of litter decomposition to nitrogen (N) addition (positive, negative or neutral) has been observed in many field studies. However, mechanism about variability in individual fungal species response to N addition has not yet been well demonstrated in the literature. Therefore, the objective of this study was to investigate the effects of N addition and litter chemistry properties on litter decomposition and enzyme activities of individual fungi. Three fungal species (Penicillium, Aspergillus, and Trichoderma) were isolated from a subtropical mixed forest soil. An incubation experiment was conducted using the individual fungi with two types of litter (leaf of Pinus massoniana and needle of Cryptocarya chinensis) and different N addition levels (0, 50 and 100 for N-deficient treatments, and 500 and 1000 μg N for N-excessive treatments). Cumulative CO2-C, enzyme activities, and lignin and cellulose loss were measured during the incubation period of 60 days. Litter decomposition and enzyme activities significantly varied with the fungal species, while the N addition and litter types greatly affected fungal enzyme activities. The N treatments significantly increased lignin-rich needle decomposition by lignocellulose decomposers (Penicillium and Aspergillus) but did not affect their leaf decomposition. On the contrary, The N treatments stimulated leaf decomposition by cellulolytic species (Trichoderma) but did not affect its needle decomposition. Correlation analysis showed that lignin in the litter was the key component to affect litter decomposition. Activities of N-acetyl-β-glucosaminidase and phenol oxidase were both positively correlated to litter decomposition. The fungi (Penicillium and Aspergillus) with higher production of N-acetyl-β-glucosaminidase showed higher litter decomposition ability. The low N addition levels stimulated Penicillium and Aspergillus litter decomposition, but they still required more N source (e.g., litter N source) to support decomposition. Depressed fungal litter N uptake (lower N-acetyl-β-glucosaminidase activities) only occurred at the highest N addition level. Litter decomposition of Trichoderma depended more on external N and its litter decomposition capability was the lowest among the three species.  相似文献   

4.
Litter decomposition is a major fundamental ecological process that regulates nutrient cycling, thereby affecting net ecosystem carbon (C) storage as well as primary productivity in forest ecosystems. Litter decomposes in its home environment faster than in any other environment. However, evidence for this phenomenon, which is called the home-field advantage (HFA), has not been universal. We provide the first HFA quantification of litter decomposition and nutrient release through meta-analysis of published data in global forest ecosystems. Litter mass loss was 4.2 % faster on average, whereas nitrogen (N) release was 1.7 % lower at the home environment than in another environment. However, no HFA of phosphorus (P) release was observed. Broadleaf litter (4.4 %) had a higher litter mass loss HFA than coniferous litter (1.0 %). The positive HFA of N release was found in the coniferous litter. Mass loss HFA was significantly and negatively correlated with the initial lignin:N litter ratio. The litter decomposition and N release HFAs were obtained when mesh size ranged from 0.15 mm to 2.0 mm. The HFA of litter decomposition increased with decomposition duration during the early decomposition stage. The HFA of N release was well correlated with mass loss, and the greatest HFA was at mass loss less than 20 %. Our results suggest that the litter decomposition and N release HFAs are widespread in forest ecosystems. Furthermore, soil mesofauna is significantly involved in the HFA of litter decomposition.  相似文献   

5.
Summary The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been removed were compared with plots in the same plant community in which litter had been added to the soil. In another treatment, litter was removed and replaced by litter from the other plant community. Net N mineralization was measured in situ after 5 years. Less soil organic matter and soil N was found in plots in which litter had been removed, compared with control plots, or plots to which litter had been added, but these differences were significant for the Erica sp. soils only. Plots in which litter had been replaced and control plots did not differ significantly in the amount of soil organic matter. However, in both plant communities, the differences agreed with the faster decomposition rate of Molinia sp. litter compared with Erica sp. litter. The gravimetric soil moisture content was correlated positively with the amount of soil organic matter, both in the Erica sp. soils and the Molinia sp. soils. Net N mineralization rates (g N m-2) differed significantly between treatments for Erica sp. soils but no for Molinia sp. soils. For Erica sp. soils, net N mineralization rates increased with increasing amounts of soil organic matter and soil N. Replacing the litter with Molinia sp. litter (which differs in chemical composition) had no clear additional effect on the net N mineralization rate.  相似文献   

6.
Global nitrogen cycling is being altered by anthropogenic disturbances including invasion by non-native species. European and Asian earthworms have invaded northern temperate forests in North America with dramatic consequences for litter thickness, forest floor plant diversity, and soil nitrogen cycling. Invasive earthworms present at the boundary of terrestrial and aquatic ecosystems (i.e., riparian zones) may alter the flux of nitrogen into adjacent aquatic ecosystems. We examined how nitrogen cycling in riparian soil responds to amendments of invasive earthworms or artificial earthworm burrows. In earthworm-free riparian plots (0.25 m2), we established treatments of invasive earthworms (60 g fresh mass·m−2), artificial burrows (120 m−2), or control plots and sampled the plots after 30 days. Before and after treatment application we measured major soil characteristics (water-filled pore space, organic matter, and pH), nitrogen pools (exchangeable NH4+ and NO3), and nitrogen transformation rates (net N-mineralization, net nitrification, and denitrification). Exchangeable NH4+ and NO3 changed through time but did not differ among treatments. Net N-mineralization and net nitrification rates did not change through time and were similar across all treatments. However, denitrification rates in plots with added earthworms were 4 times greater than rates in control and burrow-only plots, which represents a large rapid increase in gaseous nitrogen flux out of these riparian soils. For all response variables, artificial burrows responded similarly to control plots, suggesting that earthworm biological activity (i.e., feeding, excretion, and mucus production) rather than physical effects (i.e., burrowing and soil aeration) drove the changes in nitrogen cycling. Examination of soil nitrogen pool and flux measurements suggest that this increase in denitrification was coupled with NH4+ consumption by nitrifying bacteria, but future studies are needed to confirm this hypothesis. We conclude that the activity of invasive earthworms in riparian zones can increase the flux of N out of riparian zones, but the hydrologic context of the riparian zone (e.g., pore-water residence time) ultimately controls whether denitrification or nitrate leaching is the dominant flux of N.  相似文献   

7.
Decomposition processes in tropical semi-evergreen forests are still poorly understood. The influence of soil properties and litter quality on decomposition rate was studied in two semi-evergreen forests of Guadeloupe, a forest plantation and a secondary forest, located on different soils. Leaf litter of four tree species was enclosed in litterbags for a 14-month period. Non-linear correlations were calculated between mass loss and the concentration of major leaf components (soluble C, N, lignin, cellulose, tannins, total soluble phenols) in order to determine the best predictor of leaf litter decomposition. Soil physico-chemical properties and ratios between some of the above-mentioned litter quality parameters were also examined as mass loss predictors. In addition, non-linear correlations were calculated between mass loss and litter quality parameters, at successive periods. Litter quality was the main determinant of litter decomposition in the studied forests. Several litter quality parameters were correlated with leaf disappearance, varying according to stages of decomposition. Between 1 month and 2.5 months, the mass loss was correlated negatively with the initial phenol content and with initial lignin:N and (lignin+phenol):N ratios. From 2.5 to 5.5 months, the mass loss was correlated negatively with the initial phenol content and positively with the initial cellulose content. At later stages of decomposition (9-14 months), the mass loss was correlated negatively with the initial tannin content. Differences in soil characteristics and fauna did not seem to be enough to affect decomposition.  相似文献   

8.
Temporal and spatial variations in litterfall, leaf litter decomposition and nutrient release were quantified along an air pollution gradient around an industrial area in a dry tropical region of India. Significant differences were found in litterfall between the sites. Litter decomposition rates also significantly varied among the study sites. Litter decomposition was faster at sites away from the industrial region with coal-fired power plants. The concentrations of N and P increased, whereas that of Ca and SO4-S decreased in decomposing litter over time. The nutrient release pattern was also modified by atmospheric deposition. Concentrations of SO2 and NO2 were negatively correlated with relative mass loss. Turnover time of nutrients, except SO4-S in decomposing litter was maximal at the site receiving highest atmospheric depositions. The study documents that industrial emissions significantly modified nutrient cycling in adjacent terrestrial ecosystems.  相似文献   

9.
In arid areas of North America, nests of the seed-harvesting ant Pogonomyrmex rugosus tend to be elevated in mineral nitrogen and other soil nutrients relative to other microhabitats. We investigated the roles of decomposition, N mineralization, and plant nutrient uptake in maintaining high standing stocks of nutrients in P. rugosus ant nests. Decomposition rates of standard cellulose substrates placed on the surface of ant nests and other desert microhabitats suggest that conditions found in ant nests and bare areas are conducive to higher rates of decomposition than conditions under shrubs. In laboratory incubations of moist soil, net N mineralization rates were significantly higher in soil from ant nests than from bare areas and under two of three plant species. Net N mineralization rates measured in situ were much lower than those measured in laboratory incubations, but ant nest soil still exhibited higher rates at one of two sites. Litter collected from ant mounds, composed chiefly of seed chaff, was similar in N content to litter collected from underneath the dominant plant species, but had a significantly higher mean δ15N. Using this distinctive isotope signature as a tracer, we found no evidence that large perennial shrubs tap ant nests as a source of N. An invasive, annual grass species was significantly enriched in 15N, had higher leaf %N, and produced more seeds when growing on the mound than when growing several meters away; however P. rugosus nest surfaces are typically free of such annuals. We conclude that both high rates of nutrient cycling relative to other Mojave Desert microhabitats and low N utilization by the surrounding vegetation contribute to high standing stocks of mineral N in P. rugosus nests.  相似文献   

10.
Forest debris on ground surface can interact with soil biota and consequently change ecosystem processes across heterogeneous landscape. We examined the interactions between forest debris and litter decomposition in riparian and upland sites within a tropical wet forest. Our experiment included control and debris-removal treatments. Debris-removal reduced leaf litter decomposition rates in both the riparian and upland sites. Debris-removal also reduced soil microbial biomass C in the upland site, but had no effect on microbial biomass C in the riparian site. In contrast, debris-removal altered the density of selected arthropod groups in the riparian site. Litter decomposition rates correlated with both soil microbial biomass and the density of millipedes in a multiple stepwise regression model. Removal of forest debris can substantially reduce rates of leaf litter decomposition through suppressing soil activities. This influence can be further modified by landscape position. Forest debris plays an essential role in maintaining soil activities and ecosystem functioning in this tropical wet forest.  相似文献   

11.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

12.
To evaluate the effect of climate change on ecosystem functioning, the temperature and moisture response of microbial C, N, and P transformations during decomposition of Calluna vulgaris (L.) Hull. litter was studied in a laboratory incubation experiment. The litter originated from a dry heathland in the Netherlands where P limited vegetation growth. Fresh litter was incubated at 5, 10, 15, or 20°C and at a moisture content of 50, 100, or 200% in a full factorial design. Microbial nutrient transformations and activity were evaluated during two successive periods: an initial period of 48 days characterized by microbial growth and a second period from 48 to 206 days in which microbial growth declined significantly. Temperature and moisture response of respiration rate, the metabolic quotient (qCO2), C, N, and P immobilization, net N and P mineralization and nitrification rates were evaluated by performing linear regressions. Microbial nutrient transformations and microbial activity depended both on temperature and moisture. In the first period, the respiration rate, qCO2, microbial C and N immobilization, net P mineralization, net N mineralization and net nitrification rates were more strongly affected by temperature, while the microbial P immobilization rate was more strongly affected by moisture. The respiration rate, qCO2, P immobilization rate, net P and N mineralization rate, and nitrification rate increased with temperature and moisture, while the C and N immobilization rate decreased with increasing temperature and increased with moisture. In the second period, C, N, and P immobilization and net N and P mineralization rates were significantly lower. The respiration rate and qCO2 continued to increase with temperature and moisture, but C and N immobilization rates increased with temperature and declined with increasing moisture. Net P mineralization rate decreased at higher temperature and moisture, and nitrification rate declined with increasing temperature and increased with moisture. It was concluded that plant growth in these P-limited systems is very sensitive to climate change as it strongly relies on the competition for P with microbes, and temperature and moisture have a large effect on the immobilization rate of available P.  相似文献   

13.

Purpose

The rate of litter decomposition can be affected by a suite of factors, including the diversity of litter type in the environment. The effect of mixing different litter types on decomposition rates is increasingly being studied but is still poorly understood. We investigated the effect of mixing either litter material with high nitrogen (N) and phosphorus (P) concentrations or those with low N and P concentrations on litter decomposition and nutrient release in the context of agroforestry systems.

Materials and methods

Poplar leaf litter, wheat straw, peanut leaf, peanut straw, and mixtures of poplar leaf litter-wheat straw, poplar leaf litter-peanut leaf, and poplar leaf litter-peanut straw litter samples were placed in litter bags, and their rates of decomposition and changes in nutrient concentrations were studied for 12 months in poplar-based agroforestry systems at two sites with contrasting soil textures (clay loam vs silt loam).

Results and discussion

Mixing of different litter types increased the decomposition rate of litter, more so for the site with a clay loam soil texture, representing site differences, and in mixtures that included litter with high N and P concentrations (i.e., peanut leaf). The decomposition rate was highest in the peanut leaf that had the highest N and P concentrations among the tested litter materials. Initial N and P immobilization may have occurred in litter of high carbon (C) to N or C to P ratios, with net mineralization occurring in the later stage of the decomposition process. For litter materials with a low C to N or P ratios, net mineralization and nutrient release may occur quickly over the course of the litter decomposition.

Conclusions

Non-additive effects were clearly demonstrated for decomposition rates and nutrient release when different types of litter were mixed, and such effects were moderated by site differences. The implications from this study are that it may be possible to manage plant species composition to affect litter decomposition and nutrient biogeochemistry; mixed species agroforestry systems can be used to enhance nutrient cycling, soil fertility, and site productivity in land-use systems.  相似文献   

14.
Litterfall, bio- and necromass of the forest floor vegetation, decomposition of recent organic material, soil respiration and humus stocks were examined in 3 Scots pine stands along an air pollution gradient in eastern Germany. High nitrogen loads and increased pH values due to Ca deposition caused shifts in the vegetation structure, and higher biomass production of the forest floor vegetation, whereas needle litter production was not impacted. Simultaneously, decomposition rates of the recently harvested forest floor vegetation decreased with increasing pollutant loads, but needle litter and soil organic matter decomposition rates did not differ between the sites. Consequently, soil carbon and nitrogen stocks increased with increasing pollutant input.  相似文献   

15.
Information on decomposition and nutrient release from leaf litter of trees in agroforestry parkland systems in Sub-Saharan Africa is scarce despite the significant role of these trees on soil fertility improvement and maintenance. Decomposition and nutrient release patterns from pruned leaves of the two most common species of parklands of the semi-arid zone of West Africa: Vitellaria paradoxa C.F. Gaertn (known locally as karité) and Parkia biglobosa (Jacq.) Benth. (known locally as néré), were investigated by a litter-tube study in Burkina Faso. Litter quality, methods of leaf exposure to the soil and combination with fertilizers were the factors studied. Leaves of néré had a higher nutrient content (C, N, P, Ca) and contained more ash and lignin than leaves of karité. Karité leaves had a greater content of K, cellulose and polyphenols. The pruned leaves of karité and néré showed two distinct decomposition patterns. Néré leaves decomposed more rapidly, with less than 32% of the initial weight remaining after the rainy season (4 months) while karité leaves decomposed more slowly with 43% of the leaf litter remaining after the rainy season. Addition of urea and compost did not significantly affect the rate of decomposition. Significant interaction was observed between species and method of leaf exposure for the first sampling date. Leaf litter of néré buried in soil gave the highest weight loss (34% of the initial mass in 1 month) compared with exposed leaf litter of néré and karité, and buried leaf litter of karité. Except for N, nutrient release patterns were similar for both species but the nutrient release rates were higher for néré leaves compared with karité leaves. N was immobilised in karité leaves most likely due to low N and high phenolic content. The rate of nutrient release from karité leaves followed the general trend K>P>N.  相似文献   

16.
Ecosystem processes such as N transformations have seldom been studied in urban and suburban areas. Here we report the temporal and spatial variations in soil N measured continuously over 16 months in remnant forests dominated by northern red oak (Quercus rubraL.) along a 130 km urban-rural transect in the New York City metropolitan area. Urban, suburban and rural forests all exhibited clear seasonal patterns in soil N concentrations and transformation rates. Concentrations of extractable inorganic N were highest in early spring, while net N mineralization and nitrification rates were highest in summer. Peak N mineralization and nitrification in urban stands tended to occur a month earlier than in rural stands. Daily net N mineralization rates averaged 4.45 mg N kg−1 soil organic matter (SOM) in urban stands, 3.51 in suburban stands, and 2.49 in rural stands. In urban and suburban forests, between 23.2-73.8% of the annual net N mineralized was nitrified, but in rural forests, net nitrification was mostly below the detection limit. Annual net N mineralization rates, expressed on an areal basis (to a depth of 7.5 cm), averaged 11.6 g m−2 in urban forests, 11.3 g m−2 in suburban sites, and 7.3 g m−2 in rural forests. N returns in oak litter fall were 2.15, 1.32, and 1.81 g m−2 in urban, suburban, and rural stands, respectively. The elevated N transformation rates and nitrate production, in combination with possible pollution constraints on tree growth in urban environments, raises concern that these urban and suburban forests may be approaching an N saturated status.  相似文献   

17.
[目的]开展凋落叶分解速率研究,探讨凋落叶分解速率与初始质量的关系,为甘肃省兴隆山森林生态系统物质循环研究提供依据。[方法]采用凋落物分解袋法,以兴隆山青杄、山杨和白桦3种主要树种的凋落叶为研究对象,进行凋落叶分解速率及凋落叶初始质量的研究,明确凋落叶分解速率与初始质量的关系。[结果]青杄中龄林针叶分解速率为0.16,95%分解期为19.08a;青杄近熟林针叶分解速率为0.13,95%分解期为23.70a;山杨和白桦凋落叶分解速率均为0.11,95%分解期分别为28.57a和27.27a;山杨和白桦凋落叶分解速率明显要小于青杄针叶,这很可能是凋落叶分解主场效应和分解袋孔径较小所致。凋落叶分解速率与氮含量呈显著线性正相关,与木质素含量、碳/氮值、木质素/氮值和钾含量呈显著线性负相关,特别是与木质素含量、氮含量和木质素/氮值,相关系数均达0.700 0以上;钾含量、木质素含量、木质素/氮、碳/磷和纤维素含量是影响兴隆山森林凋落叶分解速率的重要指标。[结论]木质素/氮值是影响凋落叶分解速率的关键质量指标,凋落叶初始木质素/氮值越高,分解速率越低。  相似文献   

18.
ABSTRACT

Litter decomposition plays a crucial role in controlling carbon (C) cycling and nutrient turnover in agroecosystems. In this study, the litterbag method was used to investigate the mass loss and nitrogen (N) dynamics of maize litters (culms, leaves and sheaths) at aerial, surficial and belowground positions in the initial 191 d of decomposition. For any tissue, the decomposition rates in the air and on the soil surface were similar, but both were less than the decomposition rates below the ground. The sheaths always decomposed at a lower rate than the other two tissues at any position. During decomposition, the N concentrations for all tissues decreased at both the aerial and the surficial positions but increased for belowground leaves and sheaths in the last months. For the N amount, these three tissues generally exhibited a net N release during the experiment irrespective of the position. Overall, position plays a crucial role in controlling early-stage litter decomposition in croplands, and this role will be modified by litter quality. Therefore, further studies on litter decomposition should fully consider the litter position to comprehensively evaluate the biogeochemical cycles in agroecosystems.  相似文献   

19.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Elevated nitrogen (N) deposition can affect litter decomposition directly, by raising soil N availability and the quantity and quality of litter inputs, and indirectly by altering plant community composition. We investigated the importance of these controls on litter decomposition using litter bags placed in annual herb based microcosm ecosystems that had been subject to two rates of N deposition (which raised soil inorganic N availability and stimulated litter inputs) and two planting regimes, namely the plant species compositions of low and high N deposition environments. In each microcosm, we harvested litter bags of 10 annual plant species, over an 8-week period, to determine mass loss from decomposition. Our data showed that species differed greatly in their decomposability, but that these differences were unlikely to affect decomposition at the ecosystem level because there was no correlation between a species’ decomposability and its response to N deposition (measured as population seed production under high N, relative to low N, deposition). Litter mass loss was ~2% greater in high N deposition microcosms. Using a comprehensive set of measurements of the microcosm soil environments, we found that the most statistically likely explanation for this effect was increased soil enzyme activity (cellobiosidase, β-glucosidase and β-xylosidase), which appears to have occurred in response to a combination of raised soil inorganic N availability and stimulated litter inputs. Our data indicate that direct effects of N deposition on litter input and soil N availability significantly affected decomposition but indirect effects did not. We argue that indirect effects of changes to plant species composition could be stronger in natural ecosystems, which often contain a greater diversity of plant functional types than those considered here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号