首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以玫瑰香(Vitisvinifera L.CV.Muscat Hamburg)葡萄为试材,研究果实纵横径,始熟期前后pH值、可溶性糖、总酸和脱落酸含量的变化。结果表明,玫瑰香葡萄果实纵横径变化趋势基本一致,分第一个快速生长期、缓慢生长期、第二个快速生长期三个时期,果实内可溶性糖主要为葡萄糖和果糖,蔗糖含量很少。可溶性糖含量在始熟期开始快速上升,三种糖变化趋势基本一致。葡萄糖、果糖和蔗糖始熟期前平均日增量分别为0.29,0.23,0.01mg/g,始熟期后三者平均日增量分别为1.35,1.67,0.12mg/g。始熟期前果实内葡萄糖:果糖为12:1,始熟期后葡萄糖和果糖含量开始快速升高,果糖升高速率高于葡萄糖,到花后77d,二者差距逐渐缩至葡萄糖:果糖为1:1。pH值在始熟期开始快速升高,总酸含量和pH值呈吻合相反变化趋势。脱落酸含量伴随始熟的发生而迅速增加,果实成熟阶段有一个高峰,完熟前下降。总之,随着花后56d葡萄果实成熟的启动,可溶性糖含量(主要葡萄糖和果糖)、pH值和ABA水平开始快速上升。葡萄果实成熟的启动依赖于ABA峰出现,而果实完熟过程不依赖于ABA的积累。葡萄果实始熟期前后可溶性糖含量、pH值和ABA水平之间平行关系调控的生理机制,即ABA持续积累的生理机制是今后研究的重要内容。  相似文献   

2.
【目的】研究番红花花芽分化及发育的机理,探明番红花花芽分化与内源激素和糖代谢的关系,对其栽培生产具有重要意义。【方法】采用酶联免疫吸附测定法(ELISA)和蒽酮比色法等方法,对其花芽分化及发育过程中顶芽(花芽)的内源激素含量、糖含量和淀粉酶活性进行测定。【结果】花芽分化及发育过程中,IAA呈现"降-升-降"的变化趋势,GAs呈现"降-升-降-升"的变化趋势,ABA和ZRs呈现"升-降-升"的变化趋势;ABA/GAs、ABA/IAA和ZRs/GAs在FP均出现1个峰值,随后下降且低于VP水平;可溶性糖含量呈现单峰曲线变化趋势,淀粉含量则呈现单谷曲线变化趋势,α-淀粉酶和β-淀粉酶活性均总体上升,且均在DP达到最大值。【结论】低水平的IAA、GAs和高水平的ABA、ZRs有利于诱导花芽分化;在激素平衡中,高比值的ABA/GAs、ZRs/GAs和ABA/IAA有利于顶芽从营养生长向生殖生长转换;高水平的可溶性糖含量和淀粉酶活性促进花芽的分化和成花。  相似文献   

3.
草莓果实发育过程中IAA及其代谢相关酶的变化特性   总被引:1,自引:0,他引:1  
为了探索草莓果实中生长素的代谢变化及其发挥作用的机理,利用HPLC定量测定了草莓果实发育过程中瘦果和花托中的吲哚乙酸(IAA),结合生长素运输抑制剂NPA和TIBA处理考察了草莓果实中IAA含量以及不同存在状态的生长素氧化酶(IAO)和过氧化物酶(POD)活性变化,综合分析了草莓果实中IAA 的变化特性、可能来源及其与生长素代谢相关酶的关系。结果表明:①盛花期的草莓瘦果(离生雌蕊)和花托中已存在一定水平的IAA,瘦果中的IAA含量远高于花托中的;授粉受精后IAA含量逐渐上升,花托和瘦果中分别在绿熟前期和白熟前期出现峰值,并在转色期出现小峰值。②瘦果和花托之间生长素的运转与生长素极性运输体系密切相关。果实发育前期,花托中IAA含量与细胞质可溶性IAO、以离子键结合的IAO的活性显著负相关;发育前期和后期IAA含量与POD活性显著正相关。表明草莓花托中对IAA的氧化分解起主要作用的可能是IAO,而POD除了参与IAA分解之外,可能还与维持生长素的动态平衡、协同促进果实的生长发育有关。   相似文献   

4.
新梢内源激素变化对设施葡萄花芽孕育的影响   总被引:3,自引:0,他引:3  
【目的】通过研究花芽分化进程中葡萄新梢内源激素的变化规律,明确激素对设施促早栽培葡萄花芽孕育的影响,为解决设施葡萄促早栽培中“隔年结果”问题提供理论依据。【方法】以4年生贝达嫁接的‘京蜜’(V.vinifera cv. Jingmi,耐弱光品种,在日光温室促早栽培条件下不需采取任何措施即可连年丰产)与‘夏黑’(V. vinifera-V. labrusca cv. Summer Black,非耐弱光品种,在日光温室促早栽培条件下需采取更新修剪措施方能连年丰产)为试材,进行设施促早栽培(‘京蜜’和‘夏黑’)和露地栽培(‘夏黑’)处理。采集基部第1节粗度大于0.5 cm的葡萄新梢,选取其上2-3节冬芽主芽作为研究对象,借助石蜡切片法绘制取样时期-分化比率花芽分化进程图,观察其花芽分化进程;同时借助酶联免疫法测定新梢基部2-3节枝段赤霉素(GAs)、细胞分裂素(ZRs)、脱落酸(ABA)和生长素(IAA)等内源激素含量和比值的变化。【结果】新梢内源激素含量变化:与成花极差的设施促早栽培‘夏黑’不同,成花良好的设施促早栽培‘京蜜’和露地栽培‘夏黑’自雏梢生长点的未分化期(新梢展5-7叶)至雏梢生长点的顶分期(初花期)新梢内源ZRs含量一直呈稳定上升趋势;自雏梢生长点的半球/平顶分化盛期(花穗分离期)至始原始体分化盛期(坐果期)新梢内源ABA含量迅速增加;自雏梢生长点的未分化期(新梢展5-7叶)至始原始体分化盛期(果实膨大初期)新梢内源GAs的含量呈降-升-降的变化趋势;在整个花芽分化进程中新梢内源IAA的含量较高。新梢内源激素含量比值变化:与成花极差的设施促早栽培‘夏黑’不同,成花良好的设施促早栽培‘京蜜’和露地栽培‘夏黑’于花穗分离期(雏梢生长点半球/平顶期至顶分期)和果实膨大期(始原始体至花序主轴及各小穗原基形成期的分化盛期)新梢内源ZRs/GAs的比值显著增加;自花穗分离期(雏梢生长点半球/平顶期至顶分期)新梢内源ZRs/IAA的比值略微上升随后(半球/平顶期到花序二级轴分化盛期)保持平稳,且维持在较低水平;果实膨大后期(始原始体出现盛期至花序二级轴开始形成)新梢内源的ABA/GAs比值显著增加;果实膨大期(始原始体至花序主轴及各小穗原基形成期的分化盛期)之后新梢内源的ABA/IAA比值保持稳定,维持在较低水平。【结论】果实膨大期(始原始体形成)之前是花芽分化调控的关键时期。果实膨大期之前新梢内源GAs含量缺乏变化、初花期前ZRs含量和花穗分离期至坐果期ABA含量迅速下降、花芽分化进程中新梢内源IAA含量低可能是设施葡萄不能形成良好花芽的重要原因。激素间通过特定时期的平衡互作调控设施葡萄的花芽分化。花穗分离期之后新梢保持较低且稳定的内源ZRs/IAA比值利于成花,花穗分离期和果实膨大期新梢内源ZRs/GAs比值的显著上升、果实膨大期之后较高的ABA/GAs比值和较低且稳定的ABA/IAA比值促进了始原始体及花序主轴发育和二级轴的形成。  相似文献   

5.
GC-MS内标法定量分析植物组织中的JA、IAA和ABA   总被引:2,自引:1,他引:2  
提出了利用气相色谱-质谱联用仪同时定量测定植物组织中茉莉酸(JA)、吲哚-3-乙酸(IAA)和脱落酸(ABA)的方法。实验以欧洲灰杨叶片为材料,在用80%冷甲醇提取激素时,一并加入ABA、IAA和JA的内标(D3-ABA300ng,13C6-IAA60ng和DHJA80ng),激素提取液浓缩至水相,调pH2.5~3.0后经乙酸乙酯萃取、Sep-PakC18小柱纯化,甲酯化后,GC-MS定量测定ABA、JA。IAA经甲酯化后再经TMS化(三甲基硅烷化),用GC-MS定量测定。经检测:盆栽欧洲灰杨叶组织中脱落酸含量为120.170~128.771ng/g(鲜质量),茉莉酸含量为1.697~6.974ng/g(鲜质量),吲哚乙酸含量为4.990~14.776ng/g(鲜质量);脱落酸含量最高,其次是吲哚乙酸,茉莉酸含量最低。  相似文献   

6.
线辣椒果实中几种营养物质和CAT、POD活性的变化规律   总被引:5,自引:0,他引:5  
为确定不同加工目标线辣椒果实的最佳采收时期,探明果实品质变化的生理机制,以线辣椒品种(系)陕椒2006、L6、L3-2和2005-2共4个品种为材料,测定了果实发育期间相关物质的变化规律。结果表明,4个品种的各指标变化趋势大致相同:1)果实中的VC和干物质含量(质量分数)随着成熟度的增加而增加,红熟期达到最高;蛋白质和可溶性总糖含量则在果实发育初期(花后16~23 d)有一下降过程,以后又上升,最终也在接近红熟时达到最高。红熟期4品种的VC含量分别为170.340、175.898、200.996和173.944 mg/100g(FW),干物质含量分别为12.853%、12.647%、12.873%和15.455%,蛋白质含量分别为35.069、39.379、34.291和37.849 mg/g(FW),可溶性总糖含量分别为27.111、28.125、25.508、26.974 mg/g(FW)。2)辣椒素总的变化趋势是,幼果期(花后16~23 d)含量很低(4品种分别为3.69、15.15、7.86和13.65 mg/g(DW)),并且增长缓慢,开花23 d后迅速增长,花后23~37 d的平均日增长量达2.082(陕椒2006)~5.706 mg/g(DW)(L3-2),绿熟期(花后37~44 d)达到高峰(4品种分别为45.408、55.072、87.994和83.734mg/g(DW)),随后平缓下降。因此,制做干辣椒或辣椒酱的线辣椒,其最佳采收期为红熟期,在此期间红色素及其他营养指标都到最高值;以提取辣椒素为目的的线辣椒,其最佳采收期则为绿熟期。3)过氧化物酶(POD)活性是果实发育前期较高,中期较低,后期又升高(花后16、37和58 d,4个品种的POD活性分别为32~64、16~23和16~29μg/(g·h));过氧化氢酶(CAT)活性是开花后16、30和37 d较低,23、30和37 d之后较高。POD和CAT活性总体上均与辣椒素含量呈负相关。  相似文献   

7.
香气是衡量草莓果实品质的重要性状之一。以温室盆栽八倍体‘红颜’草莓(Fragaria × ananassa Duch. cv.‘Benihoppe’)为试材,利用顶空固相微萃取法(HS-SPME)提取挥发性物质,采用气相色谱-质谱联用仪(GC-MS)对其主要挥发性芳香成分进行分析;比较了3个不同发育期(大绿果期、成熟果期、过熟果期)的草莓果实中挥发性物质的种类和相对含量。结果表明,大绿果中挥发性香气成分有40种,成熟果有55种,过熟果有76种;醇类物质(52.10%)和酯类物质(23.64%)在成熟果中相对含量最高,呋喃酮类在过熟果中含量最高,酮类、有机酸类的相对含量均随果实成熟而升高,酯类、醇类和醛类含量呈先升后降的趋势。本研究结果为草莓生产中香气品质调控提供理论依据。  相似文献   

8.
树莓叶片生长过程中内源激素含量变化初步研究   总被引:1,自引:0,他引:1  
以树莓(Rubus idaeus L.)品种费尔杜德(R.idaeus L.cv.Fertod Zamatos)和哈瑞太兹(R.idaeus L.cv.Herytage)为试验材料,测定其叶片在生长过程中植物生长素(IAA)、赤霉素(GA3)和脱落酸(ABA)3种内源激素含量的变化趋势,并在2个品种间做出比较,分析3种内源激素比值及相关性。结果表明,树莓叶片从展叶到脱落过程中,内源激素含量变化趋势基本一致,GA3含量变化呈现"上升-下降-上升-下降"的变化趋势,IAA含量变化呈"先上升后下降"的变化趋势,ABA含量变化不大,整体上为"下降-上升-下降-上升"的变化趋势。GA3/ABA和IAA/ABA比值变化呈"先上升后下降"的变化趋势,其中哈瑞太慈叶片中GA3/ABA和IAA/ABA比值在果实采收期出现回升,后期下降,且GA3、IAA与ABA含量的相关性呈负相关。GA3/IAA比值前期无变化,进入衰老期有增长,GA3和IAA含量呈正相关。GA3和IAA含量在叶面积迅速增长时期达到最大值,而ABA在叶片进入衰老期则含量较高。  相似文献   

9.
 转反义 ACS( ACC合成酶基因 )番茄与普通番茄果实激素平衡方式不同。普通丽春番茄果实采前 IAA、Z+ ZR(玉米素 +玉米素核苷 )逐渐下降 ,GA在花后 40 d出现高峰 ,之后逐渐下降 ;ABA呈递增趋势 ;IAA/ ABA花后 2 0 d最高 ,花后 40 d至果实变色期变化不显著 ,但果实粉红期至红色期 IAA/ ABA显著下降。转反义 ACS番茄表现了与丽春番茄不同的变化趋势 ,其IAA/ ABA从花后 2 0 d至绿熟期呈上升趋势 ,而绿熟期至腐败期缓慢下降。转反义 ACS番茄生长类激素的含量在果实生长发育时期 (绿熟期之前 )与普通番茄没有显著差异 ,但在成熟衰老时期显著地高于普通番茄。  相似文献   

10.
为探讨白魔芋开花过程中激素与雌、雄蕊成熟时间的关系,利用酶联免疫吸附法(ELISA)对白魔芋从佛焰苞形成前期到开花后期6个不同时期雄蕊和雌蕊中4种内源激素:生长素(IAA)、赤霉素(GA3)、脱落酸(ABA)和玉米素(ZT)的质量比进行测定和分析.结果表明,IAA,GA3,ABA和ZT 4种激素的质量比均呈现出不同的变化规律,IAA在雄蕊和雌蕊中均表现为下降—上升—下降的变化趋势;ABA表现出上升—下降—上升的变化趋势,与IAA的趋势相反;GA3在整个过程中没有明显的变化规律,雄蕊在佛焰苞成形后期达到最大值,约为195ng/g,而雌蕊GA3的质量比晚于雄蕊达到最大值,雌蕊在开花前期才达到最大值,约为188ng/g;ZT质量比的变化为先升后降、再升再降.在花芽形态分化,即雌、雄蕊成熟的关键时期,雌蕊中内源IAA,GA3和ZT的质量比均高于雄蕊,且GA3表现明显,说明较高浓度的IAA,GA3和ZT在成熟过程中起促进作用,在同一过程中,雄蕊中ABA的质量比却高于雌蕊的,而雄蕊晚熟于雌蕊,表明较高浓度的ABA抑制雄蕊的成熟.ABA/IAA和ABA/ZT的比值呈现出与ABA相同的变化趋势,高浓度的ABA/IAA,ABA/ZT和ABA/GA3均不利于雄蕊的成熟,进一步证明高浓度ABA是抑制雄蕊成熟的关键因子.  相似文献   

11.
【目的】为了探明矿质元素含量与草莓果实成熟的相互关系。【方法】采集草莓果实发育七个时期(小绿、大绿、褪绿、白果、片红、全红)的样品用HNO3-H2O2混合酸液消解,采用电感耦合等离子体原子发射光谱法(ICP-AES)对样品Ca、K、Fe、Mg、Mn、Na、Zn、Cu元素含量的变化规律进行研究。【结果】结果表明,根据草莓果实矿质元素含量的多少,8种元素可分为大量营养元素(K、Ca、Mg)和微量营养元素(Fe、Na、Mn、Zn、Cu),其中K含量最高,小绿期最高达到11.1mg/g DW,成熟时约为8.3mg/g DW,但K、Ca、Mg元素果实发育后期呈现整体下降趋势。Fe是含量最高的微量元素,整体呈下降趋势。Na元素含量先下降后上升再下降,在草莓发育着色开始阶段迅速上升。Zn、Cu含量较少,草莓果实发育过程中两元素含量变化趋势一致。总之,微波消解电感耦合等离子体原子发射光谱法测得的各元素回收率在98%~104%之间,精密度(RSD%)低于5%,灵敏度高,干扰少,线性范围广,检出速度快。【结论】Na元素可能与草莓果实着色启动密切相关。  相似文献   

12.
【目的】为明确S-腺苷甲硫氨酸脱羧酶(SAMDC)在非呼吸跃变型草莓果实成熟中的作用。【方法】以‘北农香’草莓果实为试验材料,首先通过RT-PCR克隆FaSAMDC基因,其次通过SqRT-PCR分析发育果实(小绿、大绿、褪绿、白果、片红、全红)中的FaSAMDC基因的表达量。【结果】结果表明,FaSAMDC基因含有1 116bp开放阅读框,编码371个氨基酸,含有典型的脱羧酶保守功能结构域。随着草莓的果实发育,FaSAMDC表达量呈明显下降趋势并且在白果时期达到最低值,此后随着果实着色,表达量迅速上升并且成熟期达到最高。【结论】以上研究结果证实,S-腺苷甲硫氨酸脱羧酶可能参与草莓果实的成熟调控。  相似文献   

13.
为明确蓝莓果实花青苷积累与内源激素含量动态变化,本研究以5年生高丛蓝莓品种‘日出’和‘喜来’的果实为试验材料,运用高效液相色谱法(HPLC)、气相色谱法、示差法等技术,测定了果实中花青苷含量、可溶性糖含量与5大内源激素(玉米素(ZT)、脱落酸(ABA)、吲哚乙酸(IAA)、赤霉素(GA3)、乙烯(ETH))含量的变化规律并分析其相关性。结果表明,对整个蓝莓果实生长发育期间可溶性糖含量进行HPLC分析测定显示,蓝莓果实发育过程中主要以积累葡萄糖和果糖为主,蓝莓果实中可溶性糖的积累主要在果实发育后期。通过气相色谱测定蓝莓果实的ETH含量和ELISA试剂盒测定IAA、GA3、ZT、ABA显示,GA3与ZT含量较低,整体是先上升后下降的趋势,在果实发育中期出现一个峰值,IAA含量在蓝莓生长发育的过程中整体呈下降趋势,与之相反,蓝莓果实内ABA与ETH的含量变化总体呈上升的趋势。对整个蓝莓果实生长发育期间的花青苷含量、可溶性糖含量和内源激素含量3者之间进行相关性分析显示,ABA和ETH为糖类物质重要诱导因子,共同促进果实成熟和花青苷积累,IAA抑制糖类物质的积累和花青苷的合成,而GA3对糖类物质及花青苷的合成积累调控作用不明显,ABA、IAA和ETH等激素协同调控果实成熟过程。   相似文献   

14.
草莓果实不同发育时期的蛋白磷酸化水平   总被引:2,自引:0,他引:2  
【目的】通过分析草莓果实生长发育过程中蛋白磷酸化水平的变化以期揭示蛋白磷酸化在果实生长发育成熟衰老过程中的作用。【方法】以iTraq(isobaric tags for relative and absolute quantification)定量蛋白质组学结合LC-MS/MS(liquid chromatography-mass spectrometry)的方法对草莓果实的5个不同发育时期(小绿果时期、大绿果时期、白果时期、果实成熟期、果实成熟后期)的蛋白磷酸化水平进行综合分析,并对这些鉴定到的磷酸化蛋白进行生物过程分类、亚细胞定位分类和分子功能分类。通过综合分析多个数据库的比对结果,对所鉴定的磷酸化蛋白进行功能的预测。【结果】不同发育时期的磷酸化蛋白有所差异,并且在大绿果时期到果实成熟期磷酸化差异蛋白总数比其他时期显著增加,其中,多数的磷酸化蛋白参与生长发育调控。生物过程分类结果显示,这些磷酸化蛋白多数集中在植物信号转导途径和糖代谢途径中,其中,参与信号转导途径的有17个,参与糖代谢生物过程的有8个。属于MAPK级联途径的有MAPKKK家族的101308592、MAPK家族的470122684和596127083。596127083的磷酸化水平在各个发育时期较为稳定,101308592随发育时期磷酸化水平逐渐升高,而470122684的磷酸化水平从软果期开始急剧下降。亚细胞定位分类结果显示,多数磷酸化蛋白定位在细胞核和细胞质中。分子功能分类结果显示,多数磷酸化蛋白具有转录调节和磷酸化去磷酸化的分子功能,鉴定出与生长发育调节相关的磷酸化蛋白有24个。其中,具有转录调控功能的有4个,参与细胞分裂的有6个,还有一部分磷酸化蛋白与调控生长发育的激素的响应有关,除此之外,还鉴定到3个与果实的成熟软化相关的磷酸化蛋白。另外,一部分蛋白有多种磷酸化修饰方式,其中,SNF1相关蛋白激酶β亚基有3种磷酸化修饰,且其磷酸化水平各不相同。【结论】同种蛋白可能同时存在不止一种磷酸化修饰方式。不同的磷酸化修饰方式的作用不尽相同。不同的时期占主导地位的修饰方式也不尽相同。磷酸化蛋白不仅参与转录调节和细胞分裂分化,还参与果实发育过程中对植物激素的响应和糖的代谢积累,甚至参与果实成熟软化的调节。另外,101308592和470122684可能参与果实生长发育的调控。总之,蛋白磷酸化修饰在草莓果实生长发育过程中起重要的调控作用。  相似文献   

15.
原美草莓重茬病防治剂对草莓矿质元素利用效果的研究   总被引:1,自引:1,他引:1  
试验研究了原美无公害草莓重茬病防治剂和溴甲烷两种药剂对重茬草莓矿质元素吸收利用效果的影响。研究结果表明:两种药剂使土壤中速效氮、速效磷、速效钾、Fe2+、Mn2+、Cu2+、Zn2+、Ca2+、Mg2+矿质元素含量发生变化;溴甲烷处理土壤使草莓根系中全氮、Fe2+、Mn2+、Cu2+、Zn2+、Ca2+、Mg2+,叶片中全磷、全钾、Fe2+、Mg2+和果实中全磷、Fe2+、Mn2+含量显著高于空白对照。原美防治剂处理土壤使草莓根系中全磷、Mn2+,叶片中全钾、Mg2+和果实中Ca2+的含量显著高于空白对照,对其他元素的影响规律不明显。草莓重茬病的发生可能与土壤中Fe2+、K+、Cu2+等矿质元素含量过低有关。用原美防治剂A3(150 g/m2)处理防治重茬病效果最好,完全可以取代用溴甲烷防治草莓重茬病。  相似文献   

16.
草莓果实成熟过程中Vc和可溶性固形物含量的变化   总被引:1,自引:0,他引:1  
张桂霞  王英超  石璐 《安徽农业科学》2011,39(12):6995-6996
[目的]探索草莓的最佳采收期。[方法]以盆栽草莓果实为试验材料,研究草莓成熟过程中果肉硬度、维生素C含量和可溶性固形物含量的变化规律。[结果]随着草莓果实的成熟,果肉硬度逐渐下降,维生素C含量逐渐上升,可溶性固形物含量呈先上升后下降的趋势。[结论]随着草莓果实的成熟,果肉硬度下降,内在品质提高。  相似文献   

17.
为阐明去袋对套袋长富2苹果果实发育的影响并为合理确定去袋时间提供理论依据,利用毛细管电泳技术,测定了套袋的长富2苹果去外袋后,果实及种子内源激素的变化,分析了果实去袋后果实横径迅速膨大的原因。结果表明,套袋的长富2苹果去袋后5~10 d,果实横径迅速膨大。与未套袋果相比,套袋果去袋后,果肉的生长素、玉米素、赤霉素含量迅速升高,脱落酸变化不大;种子的生长素含量迅速升高,其他3种内源激素变化不明显。  相似文献   

18.
细叶百合中内源激素的变化   总被引:6,自引:0,他引:6  
应用ELISA测定了细叶百合鳞茎中的吲哚乙酸(IAA)、赤霉素(GA)、脱落酸(ABA)的含量。结果表明,不同年龄、不同部位鳞片中三种激素含量均有较大差异:随着年龄的增加,IAA的含量呈上升趋势,ABA含量呈下降趋势;外层鳞片和鳞片下层IAA含量最高,ABA含量最少,且具有较高的IAA/ABA和GA/ABA值。  相似文献   

19.
【目的】研究草莓采后成熟衰老过程中NADK活性与NAD(H)、NADP(H)及活性氧代谢和膜氧化产物变化的关系,以探讨NADK在非跃变型果实成熟衰老过程中的作用,为调控果实的成熟衰老提供理论依据。【方法】将从果园采回的草莓果实贮藏于不同的温度下并进行每天取样,研究草莓果实在低温(4℃)、常温(20℃)贮藏期间成熟衰老过程中NAD激酶(NADK)活性及其底物NAD(H)、产物NADP(H)以及超氧阴离子O2- •过氧化氢(H2O2)、膜氧化产物丙二醛(MDA)含量的变化并分析NADK 与上述指标的关系。【结果】草莓果实在低温(4℃)贮藏时,其NADK活性比常温(20℃)贮藏的高,NAD(H)含量则相应比常温贮藏的低,NADP(H)含量则高于常温下的;同时,在常温贮藏期间果实O2- •生成速率和H2O2含量、膜氧化产物MDA含量均比低温贮藏的高,暗示NADK可能通过影响NAD(H)、NADP(H)的含量及比例来调控O2- •生成速率和H2O2含量,从而调控果实的成熟衰老。【结论】非跃变型果实草莓采后成熟衰老过程中,保持较高的NADK活性有利于延缓果实的成熟衰老,降低NADK活性可导致NAD和NAD(H)含量的积累,进而加速电子传递,产生大量的活性氧O2- •和H2O2,从而促进膜过氧化作用和积累较多的MDA,最终导致果实衰老变质。  相似文献   

20.
通过对近年从国外引进的草莓新品种Basalta和Marmolada的连续几年的田间观察、定期抽样测定,结果表明:Basalta为一个优良的优质大果形早熟品种,它的丰产性强、适应强,可以作为露地和保护地栽培的选择品种;Marmolada为中晚熟品种,它在陕西关中地区的适应性较差,尚有待以后进一步观察。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号