首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As the competition for the finite water resources on earth increases due to growth in population and affluence, agriculture is faced with intensifying pressure to improve the efficiency of water used for food production. The causes for the relatively low water use efficiency in agriculture are numerous and complex, including environmental, biological, engineering, management, social, and economic facets. The complexity of the problem, with its myriads of local variations, requires a comprehensive conceptual framework of the underlying physical and biological processes as the basis to analyze the existing situation and quantify the efficiencies, and to plan and execute improvements. This paper proposes such a framework, based on the simple fact that the overall efficiency of any process consisting of a chain of sequential step is the product of the efficiency (i.e., output/input ratio) of its individual component steps. In most cases of water use, a number of process chains, both branching and merging, are involved. Means to integrate the diverging and converging chains are developed and presented as equations. Upscaling from fields to regions and beyond are discussed. This chain of efficiencies approach is general and can be applied to any process composed of chains of sequential steps. Here the framework is used to analyze the systems of irrigated and dryland crop production, and animal production on rangeland. Range of plausible efficiencies of each step is presented as tables, with values separately for the poor and for the good situation of circumstances, management and technology. Causes of the differences in efficiency of each step, going from water delivery to soil water extraction, transpiration, photosynthesis, and conversion to crop biomass and yield, and to animal product are briefly discussed. Sample calculations are made to demonstrate how modest differences in the efficiencies of the component steps are manifested as large to huge differences in the overall efficiency. Based on an equation quantifying the impact of changes in efficiency of component steps on the overall efficiency, it is concluded that generally, it is more effective to made modest improvements in several or more steps than to concentrate efforts to improve one or two steps. Hence, improvement efforts should be systematic and not overly concentrated on one or two components. The potential use of the same equation as the point of departure to optimize the allocation of economic resource among the component steps to maximize the improvement in the overall water use efficiency is elaborated on. The chain of efficiencies framework provides the means to examine the current levels of efficiency along the pathways of agricultural water use, to analyze where inefficiencies lie by comparing with the range of known efficiency values in the tables presented, to assess the potential improvements that may be achieved in various parts and their impact on the overall efficiency, and to aid in the optimal allocation of resources for improvements.
Theodore C. HsiaoEmail:
  相似文献   

3.
The paper discusses the problem of water scarcity and the need to improve efficiency and sustainability through the use of market-based mechanisms. It outlines the theoretical basis of the argument, discusses difficulties in practical application, and points to the need to develop best-practice guidelines for different circumstances.  相似文献   

4.
农业高效用水及农艺节水技术   总被引:27,自引:1,他引:27  
节水农业的中心问题是提高降水和灌水的利用效率,用水有效性无疑成为判断各种节水措施效果与潜力的标准。但用水有效性是一个相对概念,节水农业的标准也是比较型的,是与纵向和横向比较而言的,是可变的。随着科技的不断进步,节水措施的标准应该由有效用水向高效用水发展。高效用水农业就是高标准节水农业。就一个国家或一个地区而言,可以根据国情和地域情况制定一个节水农业的标准,如井灌区水的利用率为070,水的利用效率为1.2kg/m3以上,可称为节水农业;水的利用率为085以上,水的利用效率达1.8kg/m3以上…  相似文献   

5.
Sustainable agricultural development requires technologies and practices that make more efficient and productive use of resources and an enabling environment that encourages the adoption of these technologies. Many institutions and international agencies are showing considerable interest in integrated catchment management (ICM) as a practical means of improving the management of water resources, reducing environmental degradation and promoting sustainable agricultural development. This paper outlines some of the main components of ICM and lists some of the prerequisites for establishing collective responsibility for, in particular, groundwater resources. This paper also discusses the extent to which programmes of ICM can be used as a means of conserving water resources and improving water use efficiency and productivity at the farm and catchment scales.  相似文献   

6.
Food security is an issue of global concern, which is tightly linked with water supply issues as regional demands for water are dominated by agricultural water use. This special issue of Agricultural Water Management focuses on crop-water use in China, especially in the North China Plain (NCP) and Loess Plateau and surrounding areas, where intensive agriculture (e.g., wheat-maize double cropping) with limited water is practiced to meet the large demand for grains. Such intensive agriculture raises concerns for agricultural sustainability due to limited water supply and effects on water quality, which may be aggravated by projected climate change and its variability across the region and over time. Addressing these issues requires basic understanding of crop-water relationships in water-limited agricultural systems, methods to quantify water demand and actual crop-water use over multiple scales, and strategies to improve water use efficiency (WUE, or water productivity). Advances in crop breeding (selection) and agronomic management, such as irrigation and nutrient management, and tools to assess and improve WUE at multiple scales are addressed for a range of cropping systems in China. Water supplies within a basin (regional scale) must be managed in view of the patterns of water demand in space and time determined by soil and climatic conditions.  相似文献   

7.
The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge.  相似文献   

8.
Food production and water use are closely linked processes and, as competition for water intensifies, water must be used more efficiently in food production worldwide. A field experiment with wither wheat (Triticum Aestivum L.), involving six irrigation treatments (from rain-fed to 5 irrigation applications), was maintained in the North China Plain (NCP) for 6 years. The results revealed that dry matter production, grain yield and water use efficiency (WUE) were each curvilinearly related to evapotranspiration (ET). Maximum dry matter at maturity was achieved by irrigating to 94% and maximum grain yield to 84% of seasonal full ET. A positive relationship was found between harvest index (HI) and dry matter mobilization efficiency (DMME) during grain filling. Moderate water deficit during grain filling increased mobilization of assimilate stored in vegetative tissues to grains, resulting in greater grain yield and WUE. Generally, high WUE corresponded with low ET, being highest at about half potential ET. At this location in NCP, highest WUE and grain yield was obtained at seasonal water consumption in the range 250–420 mm. For that, with average seasonal rainfall of 132 mm, irrigation requirements was in the range of 120–300 mm and due to the deep root system of winter wheat and high water-holding capacity of the soil profile, soil moisture depletion of 100–150 mm constituted the greater part of the ET under limited water supply. The results reveal that WUE was maximized when around 35% ET was obtained from soil moisture depletion. For that, seasonal irrigation was around 60–140 mm in an average season.  相似文献   

9.
Improving water use efficiency in rice irrigation through wet-seeding   总被引:1,自引:0,他引:1  
Since the early-1960's, when modern rice production technologies became available, more than 90% of the total irrigation water developed in south and southeast Asia is used for rice culture. But currently rice culture is highly inefficient in water use. As fresh water availability for agriculuture is becoming increasingly scarce, greater efficiency of water use in rice culture is deemed essential. Past experience indicates that effective implementation of water-efficient irrigation methods in rice farms within public sector irrigation systems is restricted by the difficulty of controlling water deliveries and distribution, and establishing a water charge system based on the actual amount of water used by farmers. Clearly, a rice production method that is inherently less water-requiring, or more water-efficient, would have an advantage over the traditional method in this respect. Recent studies conducted in the Philippines indicate that wet-seeded rice culture is superior to the traditional transplanted rice culture in terms of water efficiency. Other advantages of wet-seeded rice culture include its greater drought tolerance, less labor requirement for crop establishment and weed control, and higher returns from rice farming. This paper presents a comparative study of wet-seeded and transplanted rice cultures focusing on these aspects.  相似文献   

10.
灌水时期不当或灌水量过大会降低烟叶的产量,同时造成水分的浪费,探究烟草适宜的灌水量至关重要。在蒸渗仪中开展试验,研究了不同灌水量对土壤水分、烤烟的水分利用效率和产量的影响。结果表明:烤烟 K326各处理不同土层含水率变化规律比较一致,(0,10]cm 土层含水率受气温、日照等气候因素较大;(10,20]cm 土壤含水率变化较剧烈;(20,60]cm 土壤含水率在整个生育期变化比较平缓,尤其在成熟后期各处理均出现不同程度的回升趋势,结合烤烟成熟期生理活动减弱、需水量减少,说明成熟期采取较小的灌水量比较适宜。成熟期烤烟的干物质产量在一定范围内随灌水量的增大而增加,如果继续加大灌水量将出现“报酬递减”现象。结合烟叶产量、烟株长势、耗水量和水分利用效率的结果,表明2700~3000 m3/hm2可以作为烤烟K326适宜的灌水量。在烤烟生产中,应均衡协调产量、水分利用效率与耗水量之间的关系,在高产前提下,适当减少灌水量,可达到既高产又节水的协调统一。  相似文献   

11.
Salt River Project (SRP) was established in 1903 to deliver water to farms on about 250,000 ac (100,000 ha) located in South-Central Arizona. While SRP continues to deliver water to the entire area, today only about 10% of that land is still in agriculture. The remainder has been urbanized. Urbanization of the vast majority of water service area has caused SRP to rethink and adjust every aspect of its business, from daily operation and maintenance to the overarching issues of liability and public involvement. Some of the issues being addressed and lessons learned are addressed in this paper.  相似文献   

12.
Water shortage in China, particularly in the north and northwest of China, is very serious. The region accounts for half of the total area of China, but has less than 20% of total national available water resources. While the water shortage in this region is severe, irrigation water use efficiency is only about 40%, with a typical agricultural water use efficiency of about 0.46 kg m−3. Excessive irrigation in Ningxia and Inner Mongolia has had a significant influence on downstream water users along the Yellow River. It is widely believed that an increase in the agricultural water use efficiency is the key to mitigating water shortage and reducing environmental problems. This paper reviews water-saving agricultural systems and approaches to improve agricultural water use efficiency in the arid and semiarid areas of China. The paper will cover biological mechanisms of water-saving agriculture and water-saving irrigation technologies, including low pressure irrigation, furrow irrigation, plastic mulches, drip irrigation under plastic, rainfall harvesting and terracing. In addition, the paper addresses the compensatory effect of limited irrigation and fertilizer supplementation on water use efficiency and highlights the need to breed new varieties for high water use efficiency. Considerable potential for further improvement in agricultural water use efficiency in the region depends on effective conservation of moisture and efficient use of the limited water.  相似文献   

13.
Forage sorghum yield and water use efficiency under variable irrigation   总被引:1,自引:0,他引:1  
The response of forage sorghum [Sorghum bicolor (L.) Moench] to three irrigation treatments in a semiarid environment was studied in the field for two seasons. Treatments were light frequent, moderate less frequent, and heavy infrequent irrigation, where irriga-tion water at 8 mm day–1 was delivered every 7, 10, and 13 days, respectively. These irrigation regimes meant heavier water inputs with increasing irrigation frequency. Plant heights and leaf area indices of forage sorghum were higher in the frequently watered plots than in plots where irrigation water was delivered less frequently. Averaged over the two seasons, maximum dry matter (DM) yields were 16.3, 11.8, and 10.5 tonnes ha–1 for frequent, intermediate, and infrequent irrigation regimes, respectively. Light, frequent irrigation resulted in a significantly higher water use efficiency (WUE) compared to the other two regimes, thus increasing the return from irrigation. These results suggest that in such semiarid environments, DM yields and WUE of forage sorghum could be increased by combining light irrigation with a short interval. Received: 6 February 1997  相似文献   

14.
This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water resources and the approaching introduction of water charges raise the concern for more efficient water use. With the data envelopment analysis (DEA) techniques used to compute farm-level technical efficiency measures and sub-vector efficiencies for water use, it was shown that under constant returns to scale (CRS) and variable returns to scale (VRS) specification, substantial technical inefficiencies, of 49% and 16%, respectively, exist among farmers. The sub-vector efficiencies for water proved to be even lower, indicating that if farmers became more efficient using the technology currently available, it would be possible to reallocate a fraction of the irrigation water to other water demands without threatening the role of small-scale irrigation. In a second step, Tobit regression techniques were used to examine the relationship between sub-vector efficiency for water and various farm or farmer characteristics. Farm size, landownership, fragmentation, the type of irrigation scheme, crop choice and the irrigation methods applied showed a significant impact on the sub-vector efficiency for water. Such information is valuable for extension services and policy makers since it can help to guide policies towards increased efficiency.  相似文献   

15.
地下水埋深对玉米生长发育及水分利用的影响   总被引:2,自引:0,他引:2  
为研究地下水埋深对作物的生长发育及水分利用的影响,选择具有代表性的夏玉米为研究对象,借助地中渗透仪,通过人工控制设置不同地下水埋深(分别设置0.2,0.4,0.6,0.8,1.0和1.2 m),探讨地下水埋深对不同生育期夏玉米的形态指标、产量、耗水量及地下水补给量的影响,分析不同地下水埋深条件下水分利用率差异.结果表明:地下水埋深对玉米株高的影响不具有统计学意义,而地下水埋深过浅或过深均会明显抑制植株叶面积指数和茎粗的增长(P〈0.05),地下水埋深0.4 m时叶面积指数和茎粗最大.随作物生育进程,根系数量和根系干质量随地下水埋深增大,先减小后增大.玉米灌浆前,单株根系伤流量随地下水埋深增大而增大,而灌浆前后则无显著影响.地下水位埋深过深或过浅均影响穗长、秃尖长、穗粒数、百粒质量及经济产量.分析表明,0.53 m为当地玉米产量最优地下水位埋深.玉米生长期内0~80 cm土层土壤含水量随着地下水埋深增大而降低,同一地下水埋深处理玉米生育期内土壤含水量变化幅度较小.夏玉米全生育期耗水量、阶段耗水量及耗水强度随地下水位埋深增大而直线减少,回归方程在P〈0.01水平下具有统计学意义;同样夏玉米全生育期地下水补给量、阶段地下水补给量及地下水补给强度随地下水位埋深增大而直线减少,回归方程在P〈0.01水平下也具有统计学意义.玉米水分利用率随地下水埋深增大而增大,地下水埋深1.2 m处理水分利用率最高.研究成果对江淮丘陵区地下水资源利用及评价、玉米高产高效灌溉制度的制订具有实际意义.  相似文献   

16.
生物可降解地膜对棉花产量及水分利用效率的影响   总被引:2,自引:0,他引:2  
为了探求华北平原棉花可降解地膜覆盖替代普通膜覆盖的可行性,解决白色污染问题,试验设置4种处理:6 μm PE普通地膜(PE)、8 μm生物可降解地膜(M1)、6 μm生物可降解地膜(M2)及不覆盖地膜(CK),分析比较各处理对棉花出苗率、叶面积指数(LAI)、农田耗水速率、产量及水分利用效率(WUE)的影响.结果表明,与处理CK相比,覆盖地膜显著提高了棉花出苗率,但3种覆膜处理间差异不具有统计学意义;在棉花生育前期,2种生物可降解地膜处理的LAI显著低于PE处理的.3种覆膜处理之间的籽棉产量和霜前花率的差异均不具有统计学意义.3种覆膜处理间WUE的差异不具有统计学意义,但均显著高于CK的.2种生物可降解地膜处理相较于PE,对棉花的出苗率、霜前花率、籽棉产量及WUE的差异均不具有统计学意义.相较于PE,使用6 μm生物可降解膜不会造成棉花耗水量升高,而8 μm可降解膜则显著增加了棉花的耗水量.因此6 μm生物降解膜取代PE膜较好.  相似文献   

17.
Wastewater use in irrigated agriculture   总被引:1,自引:0,他引:1  
  相似文献   

18.
Water availability is a major constraint to crop production in sub-Saharan Africa (SSA) where agriculture is predominantly rain-fed. This study aimed to investigate the effect of the nitrogen-fixing legume tree Leucaena (Leucaena leucocephala) and inorganic fertilizer on rain use efficiency (RUE), a robust measure of productivity and land degradation, in three long-term (11-12 years) experiments conducted in Zambia and Nigeria. On the two Zambian sites, sole maize (Zea mays) grown continuously (for 11-12 years) with the recommended fertilizer achieved the highest RUE (3.9-4.6 kg ha−1 mm−1) followed by maize intercropped with Leucaena (2.5-3.4 kg ha−1 mm−1). This translated to 192-383% increase in RUE over the control (maize grown without nutrient inputs), which is the de facto resource-poor farmers’ practice. RUE was more stable in fully fertilized sole maize on the first Zambian site and not statistically different from the maize-Leucaena associations on the second site. On the Nigerian site, RUE was higher in maize planted between Leucaena hedgerows supplemented with 50% of the recommended fertilizer (3.9 kg ha−1 mm−1), maize grown between Leucaena hedgerows without fertilizer (3.0 kg ha−1 mm−1) and sole maize receiving the recommended fertilizer (2.8 kg ha−1 mm−1), which translated to increases in RUE of 202%, 139% and 85%, respectively, over the control. RUE was more stable in the maize grown between Leucaena hedgerows than in the fully fertilized maize. On all sites RUE was least stable in the control. Yield stability in the maize-Leucaena association was not significantly different from the fully fertilized maize on the Zambian sites. On the Nigerian site, maize yields were more stable in maize grown in Leucaena hedgerows than in fully fertilized sole maize. Supplementation of maize grown in Leucaena hedgerows with 50% of the recommended fertilizers resulted in greater yield stability. It is concluded that intercropping cereals with legume trees and supplementation with inorganic fertilizer can increase rain use efficiency and yield stability in rain-fed agriculture in SSA.  相似文献   

19.
水肥耦合对温室番茄产量、水分利用效率和品质的影响   总被引:4,自引:0,他引:4  
为指导日光温室番茄高产节水优质的灌溉施肥,以番茄为研究对象,设置3种施肥方式(总施肥量相同,施肥时间不同,其中F1:不施底肥,番茄移栽后随水追施总肥量的30%,剩余70%平分6次追肥,F2:底肥施1/2,剩余平分6次追肥,F3:全施底肥不追肥)和3种土壤水势的灌水下限(W1:-30 kPa,W2:-50 kPa,W3:-70 kPa),研究滴灌条件下水肥耦合对番茄耗水量、产量、水分利用效率和品质的影响.结果表明:施肥方式对番茄的耗水量差异不具有统计学意义,而灌水下限对耗水量有极显著性影响,且耗水量与灌水量呈极显著的正相关关系(P<0.01);与产量最大处理F2W1相比,F2W2处理产量降低6.91%,但节水14.83%,水分利用效率提高8.51%;TTS质量分数与平均单果重呈极显著负相关,而与除糖酸比外其他影响品质指标呈显著性正相关关系;综合考虑产量、WUE及TTS质量分数,利用TOPSIS综合评价方法,确定了温室滴灌条件下番茄节水调质的最优灌溉施肥模式为:移栽前施入底肥为总肥量的50%,移栽后灌水20 mm,进入开花坐果期以后,20 cm土层的土壤水势控制在-50 kPa以上,每次灌水定额为10 mm,剩余肥料每隔1次灌水追肥1次,将剩余50%的肥料分6次追肥.研究成果为制定日光温室番茄节水高产优质的灌溉模式提供了理论依据.  相似文献   

20.
Canopy water use efficiency of winter wheat in the North China Plain   总被引:4,自引:0,他引:4  
Canopy water use efficiency (W), the ratio of crop productivity to evapotranspiration (ET), is critical in determining the production and water use for winter wheat (Triticum aestivum L.) in the North China Plain, where winter wheat is a major crop and rainfall is scarce and variable. With the eddy covariance (EC) technique, we estimated canopy W of winter wheat at gross primary productivity (WG) and net ecosystem productivity (WN) levels from revival to maturing in three seasons of 2002/2003, 2003/2004 and 2004/2005 at Yucheng Agro-ecosystem Station. Meanwhile we also measured the biomass-based water use efficiency (WB). Our results indicate that WG, WN and WB showed the similar seasonal variation. Before jointing (revival-jointing), WG, WN and WB were obviously lower with the values of 2.09-3.54 g C kg−1, −0.71 to 0.06 g C kg−1 and 1.37-4.03 g kg−1, respectively. After jointing (jointing-heading), the winter wheat began to grow vigorously, and WG, WN and WB significantly increased to 5.26-6.78 g C kg−1, 1.47-1.86 g C kg−1 and 6.41-7.03 g kg−1, respectively. The maximums of WG, WN and WB occurred around the stage of heading. Thereafter, WG, WN and WB began to decrease. During the observed periods, three levels of productivity: GPP, NEP and aboveground biomass (AGB) all had fairly linear relationships with ET. The slopes of GPP-ET, NEP-ET and AGB-ET were 4.67-6.12 g C kg−1, 1.50-2.08 g C kg−1 and 6.87-11.02 g kg−1, respectively. Generally, photosynthetically active radiation (PAR) and daytime vapor pressure deficit (D) had negative effects on WG, WN and WB except for on some cloudy days with low PAR and D. In many cases, WG, WN and WB showed the similar patterns. While there were still some obvious differences between them besides in magnitude, such as their significantly different responses to PAR and D on cloudy and moist days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号