首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of Zn, Cd, Pb and Cu in earthworm tissues were compared with the total and DTPA-extractable contents of these heavy metals in contaminated soils. Samples were taken from a pasture polluted by waste from a metallurgic industry over 70 y ago. Three individuals of Aporrectodea caliginosa and Lumbricus rubellus and soil samples were collected at six points along a gradient of increasing pollution. Total metal contents of earthworms, soil, and metals extracted by DTPA from the soil were measured. Total heavy metal contents of the soils ranged from 165.7 to 1231.7 mg Zn kg−1, 2.7 to 5.2 mg Cd kg−1, 45.8 to 465.5 mg Pb kg−1 and 30.0 to 107.5 mg Cu kg−1. Their correlations with metals extracted by DTPA were highly significant. Contents of the metals in earthworm tissues were higher in A. caliginosa than in L. rubellus, with values ranging from 556 to 3381 mg Zn kg−1, 11.6 to 102.9 mg Cd kg−1, 1.9 to 182.8 mg Pb kg−1 and 17.9 to 35.9 mg Cu kg−1 in A. caliginosa, and from 667.9 to 2645 mg Zn kg−1, 7.7 to 26.3 mg Cd kg−1, 0.5 to 37.9 mg Pb kg−1 and 16.0 to 37.6 mg Cu kg−1 in L. rubellus, respectively. Correlations between body loads in earthworms with either total or DTPA-extractable contents of soil metals were significant, except for Cd in L. rubellus and Cu in A. caliginosa. Considering its simple analytical procedure, DTPA-extractable fraction may be preferable to total metal content as a predictor of bio-concentrations of heavy metals in earthworms. Biota-to-Soil Accumulation Factor (BSAF) of these four metals are Cd>Zn>Cu>Pb, with range of mean values between: Cd (6.18-17.02), Zn (1.95-7.91), Cu (0.27-0.89) and Pb (0.08-0.38) in A. caliginosa, and Cd (3.64-6.34), Zn (1.5-6.35), Cu (0.29-0.87) and Pb (0.04-0.13) in L. rubellus. The BSAF of Ca, Fe and Mn are Ca>Mn>Fe, with mean values of: Ca (0.46-1.31), Mn (0.041-0.111), Fe (0.017-0.07) in A. caliginosa and Ca (0.98-2.13), Mn (0.14-0.23), Fe (0.019-0.048) in L. rubellus, respectively. Results of principal component analysis showed that the two earthworm species differ in the pattern of metal bioaccumulation which is related to their ecological roles in contaminated soils.  相似文献   

2.
《Soil biology & biochemistry》2012,44(12):2359-2367
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

3.
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

4.
Changes in plant antioxidant enzymes (AOEs) in response to cadmium (Cd) pollution are an important mechanism for plant growth and tolerance to Cd-induced stress. The main objective of this greenhouse study was to determine the combined influence of earthworm and arbuscular mycorrhiza (AM) fungal inoculation and their interactions with Cd on AOEs and proline accumulation in leaves of two major crops under Cd stress. Maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were exposed to Cd stress (10 and 20 mg kg−1 soil), inoculated with either earthworm (Lumbricus rubellus L.) or AM fungi (Glomus intraradices and Glomus mosseae species) in a pot experiment for three months. Exposure to Cd decreased shoot dry weights, increased shoot Cd and P concentrations, leaf proline accumulation and the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO) in both mycorrhizal and non-mycorrhizal plants and both in the presence and absence of earthworms. Inoculation of both model plants with earthworms and AM fungi decreased shoot Cd concentrations and the activity of all AOEs, except PPO. Although earthworm activity enhanced the proline content of sunflower in Cd-polluted soils, the proline level of both plants remained unaffected by AM fungi. AM fungi and earthworms may decrease the activity of AOEs through a decline in shoot Cd toxicity and concentration, confirming that plant inoculation with these soil organisms improves maize and sunflower tolerance and protection against Cd toxicity. Generally, the effect of AM fungal inoculation on plant responses to Cd addition was greater than that of earthworm activity. Nonetheless, the interactive effect of AM fungus and earthworm is of minor importance for most of the plant AOEs in Cd-polluted soils.  相似文献   

5.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

6.
重金属与农药复合型污染成为重要的环境问题之一,然而当前关于两者共同作用对蚯蚓-土壤-植物系统的影响研究还很少。为了探讨镉-乙草胺复合污染对蚯蚓-土壤-玉米农田系统的生态毒理效应和生态过程的影响,本研究通过室内模拟试验,从镉-乙草胺复合胁迫下蚯蚓生理响应、土壤理化性质及玉米形态特征等变化,探讨两者复合污染对玉米生长的影响机制。结果表明:1)随着处理时间的延长,镉-乙草胺复合胁迫下蚯蚓体内SOD活性呈先降低再升高的趋势,而MDA含量呈先升高后降低的趋势;复合胁迫处理第2d和50d时, 20~30 cm土层的蚯蚓数量占所有土层蚯蚓总量百分比比对照分别增加1.34倍和1.14倍,蚯蚓对镉-乙草胺复合污染作出规避效应而向深层土壤迁移。2)镉-乙草胺复合胁迫下土壤有机质和速效磷含量与处理时间、处理方式、污染物无关,随着处理时间的延长,土壤碱解氮含量呈先显著降低后升高的趋势。3)处理第50d,30 mg·kg~(-1)镉、200 mg·kg~(-1)乙草胺及30 mg·kg~(-1)镉+200 mg·kg~(-1)乙草胺处理组玉米根数均显著低于对照,抑制率分别为23.21%、42.86%和50.00%,玉米生物量与株高呈相同趋势,即30mg·kg~(-1)镉处理200mg·kg~(-1)乙草胺处理30 mg·kg~(-1)镉+200 mg·kg~(-1)乙草胺处理。相关分析表明,两种污染物除对蚯蚓SOD活性产生拮抗效应外,对蚯蚓MDA、土壤养分与玉米生长指标均不存在交互作用。本研究得出镉-乙草胺复合污染促进蚯蚓向下迁移影响其垂直分布,并且可以通过改变土壤营养元素含量最终抑制玉米的生长。  相似文献   

7.
To date, most studies about mercury (Hg) methylation and bioaccumulation have focused on aquatic ecosystems. In contrast, information regarding the biogeochemical cycle of Hg in terrestrial ecosystems is scarce. Considering the relevance of earthworms in soils, it is very important to study their role in the bioaccumulation and transformation of Hg species (inorganic Hg, IHg, and monomethylmercury, MeHg). The aim of this experimental study was to compare the uptake and bioaccumulation of MeHg and IHg in the earthworm Lumbricus terrestris exposed to soils freshly spiked with inorganic Hg as well as historically contaminated soils. The study consisted of a 28-day uptake phase in Hg (spiked and natural) contaminated and non-contaminated soils followed by a 14-day depuration phase in non-contaminated soils. Soils were characterized by determining not only Hg concentrations (total Hg, MeHg and acid-labile Hg) but also analysed for other physicochemical parameters that can influence the fate of Hg within the earthworm–soil system. Mercury species were determined in earthworms (whole organism) exposed to Hg contaminated and non-contaminated soils. Mercury availability in soils seems to be the main factor controlling the uptake and bioaccumulation of Hg species because, according to kinetic data, the spiked IHg was more readily assimilated and methylated by earthworms. Bioaccumulation factors (BAFs) for MeHg and total Hg were also higher in spiked than in naturally Hg-contaminated soils. In addition, BAFs for MeHg (ranging from 0.8 to 17.3) were higher than those for total Hg (between 0.02 and 0.62) which suggests that MeHg was more easily bioaccumulated by this earthworm species and also that earthworms may actively contribute to MeHg production in soils.  相似文献   

8.
Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time samplings that do not allow for characterisation of temporal variation. The current study monitored the short (up to 53 days) and medium term (up to 4 years) effects of soil tillage on earthworms in conventional and organic farming. Earthworm abundances decreased one and three weeks after mouldboard ploughing in both conventional and organic farming, suggesting direct and indirect mechanisms. However, the medium-term study revealed that earthworm populations in mouldboard ploughing systems recovered by spring. The endogeic species Aporrectodea caliginosa strongly dominated the earthworm community (76%), whereas anecic species remained <1% of all earthworms in all tillage and farming systems over the entire study. In conventional farming, mean total earthworm abundance was not significantly different in reduced tillage (153 m−2) than mouldboard ploughing (MP; 130 m−2). However, reduced tillage in conventional farming significantly increased the epigeic species Lumbricus rubellus from 0.1 m−2 in mouldboard ploughing to 9 m−2 averaged over 4 years. Contrastingly, in organic farming mean total earthworm abundance was 45% lower in reduced tillage (297 m−2) than MP (430 m−2), across all sampling dates over the medium-term study (significant at 3 of 6 sampling dates). Reduced tillage in organic farming decreased A. caliginosa from 304 m−2 in mouldboard ploughing to 169 m−2 averaged over 4 years (significant at all sampling dates). Multivariate analysis revealed clear separation between farming and tillage systems. Earthworm species abundances, soil moisture, and soil organic matter were positively correlated, whereas earthworm abundances and penetration resistance where negatively correlated. Variability demonstrated between sampling dates highlights the importance of multiple samplings in time to ascertain management effects on earthworms. Findings indicate that a reduction in tillage intensity in conventional farming affects earthworms differently than in organic farming. Differing earthworm species or ecological group response to interactions between soil tillage, crop, and organic matter management in conventional and organic farming has implications for management to maximise soil ecosystem functions.  相似文献   

9.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

10.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

11.
《Applied soil ecology》2007,35(2):302-310
Most of the studies focusing on metal transfer from soil to biota ignore the possible non-trophic influence of an organism on pollutant transfer to other species. We hypothesised that an earthworm (Aporrectodea tuberculata) might modify the bioavailability of metals in soil and thus, their transfer to the snail Helix aspersa. Snails were exposed for 2 weeks to a multicontaminated field soil with or without earthworms, under controlled conditions. When exposed with earthworms, snails had higher concentrations of Cd, Cu and Zn than when they were exposed alone, while no difference was detected for Pb. For Cd only, the difference in snail bioaccumulation corresponded to an increase in its water-soluble fraction. Internal concentrations of metals in earthworms remained similar in the presence or absence of snails. Two non-exclusive possible mechanisms, including variations in bioavailable fractions and/or total accessible pools of metals, are proposed to explain how earthworms could modulate the transfer of metals from soil to snails. This work demonstrated that metal transfer from soil to one invertebrate species was influenced by another invertebrate. We conclude that the concept of intermediary species, usually used to describe interactions among species, should be extended to the interactions between biota and pollutants in non-biotic compartments.  相似文献   

12.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

13.
Mining activities can cause severe soil pollution in mining area and its surroundings. Nevertheless, very little is known about the local environmental risk after the mining activities are ended in China. Earthworms and soil microbial biomass carbon (SMBC), which are often used as bioindicators of soil pollution, were studied in order to support chemical analyses in assessing the status of soil heavy metal pollution around an abandoned copper mine in eastern Nanjing, China. Seven earthworm species belonging to three families (Megascolecidae, Moniligastridae, and Lumbricidae) were present. Correlations between earthworm densities or biomass and a range of soil physical and chemical parameters were generally poor; however, several linear regression models based on the soil physicochemical characteristics and metal concentrations in earthworm bodies were established for each metal (Cu, Cd, and Zn) and each earthworm family. Therefore, metal bioaccumulation by soil-dwelling earthworms can be used as an ecological indicator of metal availability for this area. The SMBC, which varied from 83.9 to 499 g kg?1, did not correlate with the soil heavy metal concentrations, and SMBC is not proposed as a sensitive indicator for evaluating the environmental effects of soil heavy metal pollution in this area.  相似文献   

14.
Purpose

Natural organic acids, such as humic acid (HA), play crucial roles in biogeochemistry of anions and cations in soil due to their numerous functional groups on their surfaces. Selenium (Se) and cadmium (Cd) could bind strongly to HA; nevertheless, it is still unclear as to the effects of HA on Se and Cd uptake in rice which will be focused on in this paper.

Materials and methods

Pot experiments were carried out at Huazhong Agricultural University, Wuhan City, Hubei Province, China. Agricultural soils were treated with different concentrations of HA (0, 4, and 8 g kg?1 soil) and Se (SeIV or SeVI) (0 and 2 mg kg?1 soil) as well as with base fertilizer 3 days prior to planting. For Cd treatment, experimental soils were treated with Cd (0 and 2 mg kg?1 soil) 1 month before sowing. For element determination, root (after DCB extraction) and shoot samples were digested with a mixed solution of HNO3-HClO4, and the Se and Cd in digest solution were measured by HG-AFS and ICP-MS, respectively. Fe, Se, and Cd in iron plaque were extracted by DCB extraction and measured by AAS, HG-AFS, and ICP-MS, respectively.

Results and discussion

HA reduced Se (or Cd)-induced growth stimulation and Se and Cd uptake in rice seedlings, whereas iron plaque formation varied little with different treatments. HA inhibited SeIV (or SeVI) uptake in rice seedlings by reducing Se translocations from soil to iron plaque (or by increasing Se adsorption capacity of iron plaque and decreasing Se transport from iron plaque to root). HA reduced Cd uptake in rice seedlings by reducing Cd transport from soil to iron plaque and from iron plaque to root. Compared with single addition of SeIV or SeVI or HA, adding HA combined with SeIV or SeVI could further reduce Cd uptake in rice seedlings, whereas Se contents of aerial tissues did not change obviously.

Conclusions

HA inhibited the accumulation of Se (SeIV or SeVI) and Cd in rice seedlings; nevertheless, the mechanism was different. Compared with adding Se (or HA) alone, application of Se mixed with HA might be a more effective way to produce Se-enriched and Cd-deficient crop in Cd-contaminated soil.

  相似文献   

15.
Earthworms strongly affect soil organic carbon cycling. The aim of this study was to determine whether deep burrowing anecic earthworms enhance carbon storage in soils and decrease C turnover. Earthworm burrow linings were separated into thin cylindrical sections with different distances from the burrow wall to determine gradients from the burrow wall to the surrounding soil. Organic C, total N, radiocarbon (14C) concentration, stable isotope values (δ13C, δ15N) and extracellular enzyme activities were measured in these samples. Anecic earthworms increased C stocks by 270 and 310 g m?2 accumulated in the vertical burrows. C-enrichment of the burrow linings was spatially highly variable within a distance of millimetres around the burrow walls. It was shown that C accumulation in burrows can be fast with C sequestration rates of about 22 g C m?2 yr?1 in the burrow linings, but accumulated C in the burrows may be mineralised fast with turnover times of only 3–5 years. Carbon stocks in earthworm burrows strongly depended on the earthworm activity which maintains continuous C input into the burrows. The enhanced extracellular enzyme activity of fresh casts was not persistent, but was 47% lower in inhabited burrows and 62% lower in abandoned burrows. Enzyme activities followed the C concentrations in the burrows and were not further suppressed due to earthworms. Radiocarbon concentrations and stable isotopes in the burrow linings showed an exponential gradient with the youngest and less degraded organic matter in the innermost part of the burrow wall. Carbon accumulation by anecic earthworm is restricted to distinct burrows with less influence to the surrounding soil. Contrary to the initial hypothesis, that organic C is stabilised due to earthworms, relaxation time experiments with nuclear magnetic resonance spectroscopy (NMR) did not reveal any enhanced adsorption of C on iron oxides with C stabilising effect. Our results suggest that earthworm activity does not substantially increase subsoil C stocks but burrows serve as fast ways for fresh C transport into deep soil horizons.  相似文献   

16.
Microbial biomass is an important source of soil organic matter, which plays crucial roles in the maintenance of soil fertility and food security. However, the mineralization and transformation of microbial biomass by the dominant soil macrofauna earthworms are still unclear. We performed feeding trials with the geophagous earthworm Metaphire guillelmi using 14C-labelled bacteria (Escherichia coli and Bacillus megaterium) cells, fungal (Penicillium chrysogenum) cells, protein, peptidoglycan, and chitin. The mineralization rate of the microbial cells and cell components was significantly 1.2–4.0-fold higher in soil with the presence of M. guillelmi for seven days than in earthworm-free soil and 1–11-fold higher than in fresh earthworm cast material. When the earthworms were removed from the soil, the mineralization of the residual carbon of the microbial biomass was significantly lower than that in the earthworm-free soil, indicating that M. guillelmi affects the mineralization of the biomass in soil in two aspects: first stimulation and then reduction, which were attributed to the passage of the microbial biomass through the earthworm gut, and that the microorganisms in the cast could play only minor roles in the stimulated mineralization and residual stabilization of microbial biomass. Large amounts (8–29%) of radiolabel of the tested microbial biomass were assimilated in the earthworm tissue. Accumulation of fungal cells (11%) and cell wall component chitin (29%) in the tissue was significantly higher than that of bacterial cells (8%) and cell wall component peptidoglycan (15%). Feeding trails with 14C-lablled microbial cells and cell components provided direct evidence that microbial biomass is a food source for geophagous earthworm and fungal biomass is likely a more important food source for earthworms than bacterial biomass. Findings of this study have important implications for the roles of geophagous earthworms in the fate of microbial biomass in soil.  相似文献   

17.
《Soil biology & biochemistry》2001,33(7-8):983-996
We investigated the influence of earthworms on the three-dimensional distribution of soil organic carbon (SOC) in a chisel-tilled soil. By burrowing, foraging, and casting at the surface and throughout the soil, anecic earthworms such as Lumbricus terrestris L. may play a major role in regulating the spatial distribution of organic matter resources both at the surface and within the soil. In the fall of 1994, we manipulated ambient earthworm communities, which were without deep burrowing species, by adding 100 earthworm individuals m−2 in spring and fall for 3 years. Overall, the biomass of L. terrestris was increased with earthworm additions and total earthworm biomass declined compared with ambient control treatments. To investigate the spatial variability in soil organic carbon due to this shift in earthworm community structure, we sampled soil on a 28×24 cm grid from the surface to 40 cm in four layers, 10 cm deep. Samples were analyzed for total carbon. We found that additions of anecic earthworms significantly increased average soil organic carbon content from 16.1 to 17.9 g C kg−1 for the 0–10 cm soil, and from 12.4 to 14.7 g kg−1 at 10–20-cm depth, and also changed the spatial distribution of soil organic carbon from uniform to patchy, compared with the ambient treatment.  相似文献   

18.
This paper reports the results of a study focused on the metal (Cd, Co, Cr, Cu, Ni, Pb, Sb, U and Zn) distribution in soils and uptake and accumulation by earthworms Nicodrilus caliginosus (Savigny) from urban, peri-urban, green-urban and non-urban zones of Siena municipality (central Italy). The main goal was to define the influence of soil properties and metal soil contents on the uptake of these contaminants by earthworms. Data indicated that Cd, Cu, Pb, Sb and Zn soil contents increased in the following order: non-urban < green-urban < peri-urban < urban soils, suggesting that vehicular traffic affects the distribution of these metals. Pb and Sb were the main soil contaminants and their highest enrichments were found in urban sites where stop-and-go traffic occurs. Concentrations of these traffic-related metals in earthworms showed a distribution pattern similar to that in soil, suggesting that soil contamination influenced the uptake of Cd, Cu, Pb, Sb and Zn by N. caliginosus. There were significant positive correlations between Cd, Pb and Sb earthworm concentrations and their soil contents. The lack of correlation for Cu and Zn could be due to the physiological regulation of these elements by earthworms. Statistical analysis pointed out that the uptake and accumulation of Cd, Cu, Pb, Sb and Zn by earthworms were affected by some soil physicochemical properties such as the organic carbon and carbonate contents that are able to rule the bioavailability of metals in soils.  相似文献   

19.
The benefits of adding composted organic materials to soils to enhance carbon storage could be countered by the mobilisation of some harmful pollutants commonly found in frequently degraded urban soils. Therefore non-composted materials could be a safer option. In the present study, carbon and trace element fluxes in soil pore water were studied in response to the surface mulch addition and the incorporation into an urban soil of greenwaste compost versus two non-composted amendments; a woody oversize material and biochar following inoculation with the vertical burrowing earthworm Lumbricus terrestris. The aim was to establish (i) to what extent the non-composted amendments impacted on mobility of soluble trace elements in the soil, compared to the composted amendment, and (ii) if/how this was regulated by earthworm activity.Both composted and non-composted amendments enhanced dissolved organic carbon (DOC) in soil pore water to ∼100-300 mg l−1 in the upper depth of the soil profile above which they were applied as a mulch and similarly within the mesocosms in which they were mixed. Dissolved organic carbon, dissolved nitrogen (DTN) and trace metals, especially Cu and Pb, where enhanced to the greatest extent by greenwaste compost, because of strong co-mobilisation of metals by DOC. Biochar enhanced As and Cu mobility in the field profile and, additionally Pb in the mesocosms, with no effect on Cd. The woody, oversize amendment neither greatly increased DOC nor As, Cu, Pb or Zn mobility although, unlike the other amendments, earthworms increased DOC and Cd mobility when soils were amended with this material.This study concludes that non-composted amendments had a lower impact on DOC and thus trace element co-mobility than the composted greenwaste in this urban soil, whilst the general influence of earthworms was to reduce DOC and hence associated trace element mobility. In wider environmental terms the addition of non-composted materials to some urban soils, versus composted greenwaste could reduce the risk of mobilising potentially harmful elements, whilst usefully improving soil quality.  相似文献   

20.
Two field experiments had been conducted in Huantai County, Shandong Province, east of China, with an effort to understand the impact of agricultural intensification on earthworm diversity and population density. Seven species of earthworms were identified in the two experiments. Average earthworm populations in the higher fertility soil (experiment B, 1.83% organic matter) were relatively abundant, with a population density of 105 indiv./m2 and biomass of 57 g/m2. Aporrectae trapezoids was the most dominant species. In the lower fertility soils (experiment A, 1.43% organic matter) the population density was only 51 indiv./m2 and the average biomass was 30 g/m2. Drawida gisti was the most dominant species. For both the experiments A and B, organic fertilizer (OF) and crop straw return increased earthworm abundance. The impact of chemical fertilizer (CF) on the earthworm population was found to depend on the amount of organic input. In experiment B, the earthworm biomass decreased when only winter wheat (Triticum aestivum) straw was input at three CF application levels. However, while both winter wheat straw (WS) and corn (Zea mays) stalk returned, there was no negative correlation between CF and earthworm density and biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号