首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

2.
Soil erosion is the main process leading to soil degradation on the Loess Plateau of China. The effects of soil‐erosion intensity (sheet, rill, and gully erosion) and different land use (140 y–old secondary forest site, 16 y–old bare site, 6 y–old succession site, and 43 y–old arable site) on gross and net N mineralization, soil organic‐carbon (SOC) turnover, the size and structure of the soil microbial community (phospholipid fatty acid analysis) were assessed. Erosion intensity in the bare plot increased from top slope (sheet erosion) to down slope (gully erosion). The more severe the soil erosion the stronger was the decline of SOC, total N, and microbial biomass (MB). The MBC/SOC ratio decreased whereas the metabolic quotient (qCO2) increased. Differences in nutrient turnover in the different erosion zones of the bare plot were not significant. The microbial community changed towards less Gram negative bacteria and relative more fungi in the gully‐erosion zone. In forest soils, qCO2 and the MBC/SOC ratio demonstrate a higher substrate‐use efficiency of the microbial biomass than in bare soils. Gross N mineralization and gross NH consumption clearly indicated a higher microbial activity in forest than in bare soils. Arable land use shifted the soil microbial community towards a higher relative abundance of fungi and a lower one of actinomycetes. During 6 y of natural succession on former bare plots, soil nutrient content and turnover as well as microbial biomass and structure developed towards forest conditions.  相似文献   

3.
In a mesocosm experiment, we studied decomposition rates as CO2 efflux and changes in plant mass, nutrient accumulation and soil pools of nitrogen (N) and phosphorus (P), in soils from a sub-arctic heath. The soil was incubated at 10 °C and 12 °C, with or without leaf litter and with or without plants present. The purpose of the experiment was to analyse decomposition and nutrient transformations under simulated, realistic conditions in a future warmer Arctic.Both temperature enhancement and litter addition increased respiration rates. Temperature enhancement and surprisingly also litter addition decreased microbial biomass carbon (C) content, resulting in a pronounced increase of specific respiration. Microbial P content increased progressively with temperature enhancement and litter addition, concomitant with increasing P mineralisation, whereas microbial N increased only in the litter treatment, at the same time as net N mineralisation decreased. In contrast, microbial biomass N decreased as temperature increased, resulting in a high mobilisation of inorganic N.Plant responses were closely coupled to the balance of microbial mineralisation and immobilisation. Plant growth and N accumulation was low after litter addition because of high N immobilisation in microbes and low net mineralisation, resulting in plant N limitation. Growth increased in the temperature-enhanced treatments, but was eventually limited by low supply of P, reflected in a low plant P concentration and high N-to-P ratio. Hence, the different microbial responses caused plant N limitation after litter addition and P limitation after temperature enhancement. Although microbial processes determined the main responses in plants, the plants themselves influenced nutrient turnover. With plants present, P mobilisation to the plant plus soil inorganic pools increased significantly, and N mobilisation non-significantly, when litter was added. This was presumably due to increased mineralisation in the rhizosphere, or because the nutrients in addition to being immobilised by microbes also could be absorbed by plants. This suggests that the common method of measuring nutrient mineralisation in soils incubated without plants may underestimate the rates of nutrient mobilisation, which probably contributes to a commonly observed discrepancy of measured lower rates of net nutrient mineralisation than uptake rates in arctic soils.  相似文献   

4.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

5.
Because carbon dioxide (CO2) concentration is rising, increases in plant biomass and productivity of terrestrial ecosystems are expected. However, phosphorus (P) unavailability may disable any potential enhanced growth of plants in forest ecosystems. In response to P scarcity under elevated CO2, trees may mine deeper the soil to take up more nutrients. In this scope, the ability of deep horizons of forest soils to supply available P to the trees has to be evaluated. The main objective of the present study was to quantify the relative contribution of topsoil horizons and deep horizons to P availability through processes governed by the activity of soil micro-organisms. Since soil properties vary with soil depth, one can therefore assume that the role of microbial processes governing P availability differs between soil layers. More specifically, our initial hypothesis was that deeper soil horizons could substantially contribute to total plant available P in forested ecosystems and that such contribution of deep horizons differs among sites (due to contrasting soil properties). To test this hypothesis, we quantified microbial P and mineralization of P in ‘dead’ soil organic matter to a depth of 120 cm in forest soils contrasting in soil organic matter, soil moisture and aluminum (Al) and iron (Fe) oxides. We also quantified microbiological activity and acid phosphomonoesterase activity. Results showed that the role of microbial processes generally decreases with increasing soil depth. However, the relative contribution of surface (litter and 0–30 cm) and deep (30–120 cm) soil layers to the stocks of available P through microbial processes (51–62 kg P ha?1) are affected by several soil properties, and the contribution of deep soil layers to these stocks vary between sites (from 29 to 59%). This shows that subsoils should be taken into account when studying the microbial processes governing P availability in forest ecosystems. For the studied soils, microbial P and mineralization of P in ‘dead’ soil organic matter particularly depended on soil organic matter content, soil moisture and, to a minor extent, Al oxides. High Al oxide contents in some sites or in deep soil layers probably result in the stabilization of soil organic compounds thus reducing microbiological activity and mineralization rates. The mineralization process in the litter also appeared to be P-limited and depended on the C:P ratio of soil organic matter. Thus, this study highlighted the effects of soil depth and soil properties on the microbial processes governing P availability in the forest spodosols.  相似文献   

6.
生物土壤结皮的发育类型对土壤养分和微生物代谢起着重要作用。为进一步明确在生物结皮发育过程中微生物的限制性养分与影响因素,研究选择黄土丘陵区垂直陡壁表面上的裸土(CK)、浅色藻结皮(LA)、深色藻结皮(DA)、藻藓混合结皮(AM)和藓结皮(M)为研究对象,分析了不同生物土壤结皮类型下碳(C)、氮(N)、磷(P)养分状况与胞外酶活性,并通过胞外酶化学计量来量化微生物的代谢限制。结果表明:LA,DA,AM和M这4种类型生物土壤结皮C,N,P养分含量和微生物生物量C,N,P均显著高于CK(p<0.05),并且SOC,TN,TP和微生物生物量C,N,P随CK,LA,DA,AM和M的顺序逐渐增大,藓结皮微生物量C,N,P分别是CK处理的18.3,27.6,14.1倍。生物土壤结皮的发育显著提高了C,N,P循环酶的活性,冗余分析结果表明土壤养分与酶活性密切相关。此外,通过酶计量的矢量模型结果来看,生物土壤结皮的发育造成微生物相对碳限制的增大与相对磷限制的减小,并受到速效养分含量的影响。偏最小二乘路径模型结果也表明生物土壤结皮的类型会间接影响微生物的代谢限制。总的来说,生物土壤结皮类型的变化会改善土壤养分状况与微生物量等性质,养分资源的供应状况会造成微生物养分代谢的变化。  相似文献   

7.
We performed an assay of nutrient limitations to soil microbial biomass in forest floor material and intact cores of mineral soil collected from three North Carolina loblolly pine (Pinus taeda) forests. We added solutions containing C, N or P alone and in all possible combinations, and we measured the effects of these treatments on microbial biomass and on microbial respiration, which served as a proxy for microbial activity, during a 7-day laboratory incubation at 22 °C. The C solution used was intended to simulate the initial products of fine root decay. Additions of C dramatically increased respiration in both mineral soil and forest floor material, and C addition increased microbial biomass C in the mineral soil. Additions of N increased respiration in forest floor material and increased microbial biomass N in the mineral soil. Addition of P caused a small increase in forest floor respiration, but had no effect on microbial biomass.  相似文献   

8.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

9.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

10.
Although soil Collembola are known to contribute to soil carbon (C) cycling, their contribution to the mineralization of C sources that differ in bioavailability, such as soil organic C (SOC) and leaf litter, is unknown. Stable C isotopes are often used to quantify the effects of both soil C and litter C on C mineralization. Here, 13C-labeled litter was used to investigate the effects of Collembola (Folsomia candida) on the mineralization of both SOC and litter C in laboratory microcosms. The three microcosm treatments were soil alone (S); soil treated with δ13C-labeled litter (SL); and soil treated with δ13C-labeled litter and Collembola (SLC). The presence of Collembola did not significantly affect soil microbial biomass or litter mass loss and only had a small effect on CO2 release during the first week of the experiment, when most of the CO2 was derived from litter rather than from SOC. Later, during the experiment (days 21 and 63), when litter-derived labile C had been depleted and when numbers of Collembola had greatly increased, Collembola substantially increased the emission of SOC-derived CO2. These results suggest that the effect of Collembola on soil organic C mineralization is negatively related to C availability.  相似文献   

11.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

12.
Soil erosion has significant impacts on terrestrial carbon (C) dynamics. It removes C‐rich topsoil and deposits it in lower areas, which might result in its stabilization against microbial decay. Subsequently, C‐poor deeper horizons will be exposed, which also affects C stabilization. We analysed factors governing soil organic C (SOC) mineralization in topsoil (5–10 cm) and subsoil (75–100 and 160–200 cm) horizons from two contrasting sites (up‐slope compared with down‐slope) in the Belgian Loess Belt; we refer to these as eroding and depositional sites, respectively. Deposition of eroded soil material resulted in significantly increased SOC contents throughout the entire soil profile (2 m) and microbial biomass C in the topsoil. In a 28‐day incubation experiment we studied effects of O2 concentrations (0, 5 and 20%) and substrate (glucose) availability on C mineralization, soil microbial biomass and CaCl2‐extractable C. Carbon enrichment at the depositional site was accompanied by weak mineralization rates and small contents of water‐extractable organic C. Addition of glucose stimulated microbial growth and enhanced respiration, particularly in the subsoil of the depositional site. Availability of O2 showed the expected positive relationship with C mineralization in topsoils only. However, small O2 concentrations did not decrease C mineralization in subsoils, indicating that controls on C dynamics were different in top‐ and subsoils. We conclude that reduced C mineralization contributed to C accumulation as observed at depositional sites, probably because of poor availability of C in subsoil horizons. Limited availability of O2 in subsoils can be excluded as an important control of soil C accumulation. We hypothesize that the composition of the microbial community after burial of the organic‐rich material might play a decisive role.  相似文献   

13.
鉴于塔里木沙漠公路防护林所处环境条件和管理模式的特殊性及在南疆社会、经济发展中的重要性,试验选择四种不同矿化度(2.58、5.75、8.90、13.99 g L-1)水滴灌的防护林地,采集0~5 cm、5~15cm、15~30 cm、30~50 cm四层土样为研究材料,主要采用典型相关分析法,对防护林地土壤养分因子、微生物量因子和酶活性因子中每两组变量间的相关性进行了分析。结果表明:三组变量土壤养分、微生物量、酶活性中,每两者之间均有显著的典型相关变量存在,而且基本能够代表变量总体相关信息;土壤养分与土壤微生物量的相关性主要由养分中的全氮、速效氮、有机质、全磷含量和土壤微生物量中的放线菌数量、微生物量碳和微生物量磷引起的;土壤养分与土壤酶活性的相关性主要由土壤有机碳、速效钾含量与土壤过氧化氢酶、磷酸酶活性的相关性引起;土壤微生物量与土壤酶活性的相关性主要由土壤微生物量磷、微生物量氮与土壤蔗糖酶、磷酸酶活性的相关性引起;滴灌水矿化度对塔里木沙漠公路防护林地土壤养分和微生物量的效应明显,高矿化度水不利于土壤养分积累和微生物生存。  相似文献   

14.
The dominant pools of C and N in the terrestrial biosphere are in soils, and understanding what factors control the rates at which these pools cycle is essential in understanding soil CO2 production and N availability. Many previous studies have examined large scale patterns in decomposition of C and N in plant litter and organic soils, but few have done so in mineral soils, and fewer have looked beyond ecosystem specific, regional, or gradient-specific drivers. In this study, we examined the rates of microbial respiration and net N mineralization in 84 distinct mineral soils in static laboratory incubations. We examined patterns in C and N pool sizes, microbial biomass, and process rates by vegetation type (grassland, shrubland, coniferous forest, and deciduous/broadleaf forest). We also modeled microbial respiration and net N mineralization in relation to soil and site characteristics using structural equation modeling to identify potential process drivers across soils. While we did not explicitly investigate the influence of soil organic matter quality, microbial community composition, or clay mineralogy on microbial process rates in this study, our models allow us to put boundaries on the unique explanatory power these characteristics could potentially provide in predicting respiration and net N mineralization. Mean annual temperature and precipitation, soil C concentration, microbial biomass, and clay content predicted 78% of the variance in microbial respiration, with 61% explained by microbial biomass alone. For net N mineralization, only 33% of the variance was explained, with mean annual precipitation, soil C and N concentration, and clay content as the potential drivers. We suggest that the high R2 for respiration suggests that soil organic matter quality, microbial community composition, and clay mineralogy explain at most 22% of the variance in respiration, while they could explain up to 67% of the variance in net N mineralization.  相似文献   

15.
Acid deposition can deplete soil calcium (Ca) and be detrimental to the health of some forests. We examined effects of soil Ca and phosphorus (P) availability on microbial activity and nitrogen (N) transformations in a plot-scale nutrient addition experiment at the Hubbard Brook Experimental Forest in New Hampshire, USA. We tested the hypotheses that (1) microbial activity and N transformations respond to large but not small changes in soil Ca, (2) soil Ca availability influences net N mineralization via the immobilization of N, rather than via changes in microbial activity, and (3) the response to Ca is constrained by P availability. Seasonality was a primary influence on the microbial response to treatments; N cycling processes varied from May to October and treatment effects were only detectable in the mid-growing season, in July. Neither microbial activity (C mineralization) nor gross N mineralization responded to Ca or to P, in either horizon. In the Oa horizon in July net N mineralization was reduced by high Ca and by Ca + P, and gross nitrification was increased by P addition. In the Oe horizon in July net N mineralization was reduced by Ca + P. These results partially supported our hypotheses, suggesting that soil Ca depletion has the potential to increase mid-growing season N availability via subtle changes in N immobilization, and that this effect is sensitive to soil P chemistry. The horizon-specific nature of the responses that we detected suggests that the proportions of Oe and Oa horizons comprising the surface organic layer will influence the relative importance of these processes at the ecosystem scale. Our results highlight the need for further attention to seasonal changes in controls of microbial mineralization/immobilization processes, to functional differences between organic horizons, and to interactions between Ca and P in soils, in order to learn the specific mechanisms underlying the influence of Ca status on nutrient recycling in these northern hardwood ecosystems.  相似文献   

16.
Microbial mineralization and immobilization of nutrients strongly influence soil fertility. We studied microbial biomass stoichiometry, microbial community composition, and microbial use of carbon (C) and phosphorus (P) derived from glucose-6-phosphate in the A and B horizons of two temperate Cambisols with contrasting P availability. In a first incubation experiment, C, nitrogen (N) and P were added to the soils in a full factorial design. Microbial biomass C, N and P concentrations were analyzed by the fumigation-extraction method and microbial community composition was analyzed by a community fingerprinting method (automated ribosomal intergenic spacer analysis, ARISA). In a second experiment, we compared microbial use of C and P from glucose-6-phosphate by adding 14C or 33P labeled glucose-6-phosphate to soil. In the first incubation experiment, the microbial biomass increased up to 30-fold due to addition of C, indicating that microbial growth was mainly C limited. Microbial biomass C:N:P stoichiometry changed more strongly due to element addition in the P-poor soils, than in the P-rich soils. The microbial community composition analysis showed that element additions led to stronger changes in the microbial community in the P-poor than in the P-rich soils. Therefore, the changed microbial biomass stoichiometry in the P-poor soils was likely caused by a shift in the microbial community composition. The total recovery of 14C derived from glucose-6-phosphate in the soil microbial biomass and in the respired CO2 ranged between 28.2 and 37.1% 66 h after addition of the tracer, while the recovery of 33P in the soil microbial biomass was 1.4–6.1%. This indicates that even in the P-poor soils microorganisms mineralized organic P and took up more C than P from the organic compound. Thus, microbial mineralization of organic P was driven by microbial need for C rather than for P. In conclusion, our experiments showed that (i) the microbial biomass stoichiometry in the P-poor soils was more susceptible to additions of C, N and P than in the P-rich soils and that (ii) even in the P-poor soils, microorganisms were C-limited and the mineralization of organic P was mainly driven by microbial C demand.  相似文献   

17.
Summary We investigated the effects of pitch pine seedling roots on extractable N, microbial growth rate, biomass C and N, and nematodes and microarthropods in microcosms with either organic (41% C, 1.14% N) or mineral (0.05% C, 0.01% N) horizon soils of a spondosol. Root quantity was manipulated by varying plant density (0, 1, 2, or 4 seedlings) and rhizosphere soil was separated from non-rhizosphere soil by a 1.2 m mesh fabric. In the rhizosphere of organic soil horizons, moisture, microbial growth rate, biomass C and N, and extractable N declined as root density was increased, but there was little effect on nematodes or microarthropods. High levels of extractable N remained after 5 months, suggesting that N mineralization was stimulated during the incubation. In the rhizosphere of mineral soil horizons, microbial growth rate, and nematode and microarthropod abundances increased at higher root density, and in the absence of roots faunal abundance approached zero. Faunal activity was concentrated in the rhizosphere compared to non-rhizosphere soil. In organic soil horizons, roots may limit microbial activity by reducing soil moisture and/or N availability. However, in mineral soil horizons, where nutrient levels are very low, root inputs can stimulate microbial growth and faunal abundance by providing important substrates for microbial growth. Our results demonstrate a rhizosphere effect for soil fauna in the mineral soil, and thus extends the rhizosphere concept to components of the soil community other than microbes for forest ecosystems. Although our results need to be verified by field manipulations, we suggest that the effects of pine roots on nutrient cycling processes in coniferous forests can vary with soil nutrient content and, therefore, position in the soil profile.  相似文献   

18.
To understand the spatial and temporal dynamics of soil microbial biomass and its role in soil organic matter and nutrient flux in disturbed tropical wet-evergreen forests, we determined soil microbial biomass C, N and P at two soil depths (0–15 and 15–30 cm), along a disturbance gradient in Arunachal Pradesh, northeastern India. Disturbance resulted in considerable increase in air temperature and light intensity in the forest and decline in the soil nutrients concentration, which affected the growth of microbial populations and soil microbial biomass. There were significant correlations between bacterial and fungal populations and microbial biomass C, N and P. Soil microbial population was higher in the undisturbed (UD) forest stand than the disturbed forest stands during post-monsoon and less during rainy season due to heavy rainfall. Greater demand for nutrients by plants during rainy season limited the availability of nutrients to soil microbes and therefore, low microbial biomass C, N and P. Microbial biomass was negatively correlated with soil temperature and pH in all the forest stands. However, there were significant positive relationships among microbial biomass C, N and P. Percentage contribution of microbial C to soil organic C was higher in UD forest, whereas percentage contribution of microbial biomass N and P to total N and total P was higher in the moderately disturbed site than in the highly disturbed (HD) site. These results reveal that the nutrient retention by soil microbial biomass was greater in the selective logged stand and would help in the regeneration of the forest upon protection. On the other hand, the cultivated site (HD) that had the lowest labile fractions of soil organic matter may recover at a slower phase. Further, minimum and maximum microbial biomass C, N and P during rainy and winter seasons suggest the synchronization between nutrient demand for plant growth and nutrient retention in microbial biomass that would help in ecosystem recovery following disturbance.  相似文献   

19.
Effects of goat manure application combined with charcoal and tannins, added as feed additives or mixed directly, on microbial biomass, microbial residues and soil organic matter were tested in a 2-year field trial on a sandy soil under Omani irrigated subtropical conditions. Soil microbial biomass C revealed the fastest response to manure application, followed by microbial residue C, estimated on the basis of fungal glucosamine and bacterial muramic acid, and finally soil organic C (SOC), showing the slowest, but still significant response. At the end of the trial, microbial biomass C reached 220 μg g?1 soil, i.e. contents similar to sandy soils in temperate humid climate, and showed a relatively high contribution of saprotrophic fungi, as indicated by an average ergosterol to microbial biomass C ratio of 0.35 % in the manure treatments. The mean fungal C to bacterial C ratio was 0.55, indicating bacterial dominance of microbial residues. This fraction contributed relatively low concentrations of between 20 and 35 % to SOC. Charcoal added to manure increased the SOC content and the soil C/N ratio, but did not affect any of the soil microbial properties analysed. Tannins added to manure reduce the 0.5 M K2SO4-extractable N to N total ratio compared to manure control. These effects occurred regardless of whether charcoal or tannins were supplied as feed additive or directly mixed to the manure.  相似文献   

20.
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests. In order to examine how above-ground litter inputs affect soil carbon (C), nitrogen (N) and phosphorus (P) in a temperate deciduous forest, we studied a 14-year-old small-scale litter manipulation experiment that included control, litter exclusion, and doubled litter addition at a mature Fagus sylvatica L. site. Total organic C (TOC), total N (TN) and total P (TP), total organic P (TOP), bioavailable inorganic P (Pi), microbial C, N and P, soil respiration and fine root biomass were analyzed in the A and in two B horizons. Our results showed that litter manipulation had no significant effect on TOC in the mineral soil. Litter addition increased the bioavailable Pi in the A horizon but had no significant effect on N in the mineral soil. Litter exclusion decreased TN and TP in the B horizon to a depth of 10 cm. In the A horizon of the litter exclusion treatment, TP, TOP and bioavailable Pi were increased, which is most likely due to the higher root biomass in this treatment. The high fine root biomass seems to have counteracted the effects of the excluded aboveground litter. In conclusion, our study indicates that aboveground litter is not an important source for C in the mineral soil and that P recycling from root litter might be more important than from above-ground litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号