首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Nitrogen (N) cycling in terrestrial ecosystems is complex since it involves the closely interwoven processes of both N uptake by plants and microbial turnover of a variety of N metabolites. Major interactions between plants and microorganisms involve competition for the same N species, provision of plant nutrients by microorganisms and labile carbon (C) supply to microorganisms by plants via root exudation. Despite these close links between microbial N metabolism and plant N uptake, only a few studies have tried to overcome isolated views of plant N acquisition or microbial N fluxes. In this study we studied competitive patterns of N fluxes in a mountainous beech forest ecosystem between both plants and microorganisms by reducing rhizodeposition by tree girdling. Besides labile C and N pools in soil, we investigated total microbial biomass in soil, microbial N turnover (N mineralization, nitrification, denitrification, microbial immobilization) as well as microbial community structure using denitrifiers and mycorrhizal fungi as model organisms for important functional groups. Furthermore, plant uptake of organic and inorganic N and N metabolite profiles in roots were determined.Surprisingly plants preferred organic N over inorganic N and nitrate (NO3) over ammonium (NH4+) in all treatments. Microbial N turnover and microbial biomass were in general negatively correlated to plant N acquisition and plant N pools, thus indicating strong competition for N between plants and free living microorganisms. The abundance of the dominant mycorrhizal fungi Cenococcum geophilum was negatively correlated to total soil microbial biomass but positively correlated to glutamine uptake by beech and amino acid concentration in fine roots indicating a significant role of this mycorrhizal fungus in the acquisition of organic N by beech. Tree girdling in general resulted in a decrease of dissolved organic carbon and total microbial biomass in soil while the abundance of C. geophilum remained unaffected, and N uptake by plants was increased. Overall, the girdling-induced decline of rhizodeposition altered the competitive balance of N partitioning in favour of beech and its most abundant mycorrhizal symbiont and at the expense of heterotrophic N turnover by free living microorganisms in soil. Similar to tree girdling, drought periods followed by intensive drying/rewetting events seemed to have favoured N acquisition by plants at the expense of free living microorganisms.  相似文献   

2.
The effects of repeated soil drying and rewetting on microbial biomass N (Nbio) and mineral N (Nmin) were measured in incubation experiments simulating typical moisture and temperature conditions for soils from temperate climates in the post‐harvest period. After application of in vitro 15N‐labeled fungal biomass to a silty loam, one set of soils was exposed to two drying‐rewetting cycles (treatment DR; 14 days to decrease soil moisture to 20 % water‐holding capacity (WHC) and subsequently 7 days at 60 % WHC). A control set (treatment CM) was kept at constant moisture conditions (60 % WHC) throughout the incubation. Nbio and Nmin as well as the 15N enrichment of these N pools were measured immediately after addition of 15N‐labeled biomass (day 0) and after each change in soil moisture (day 14, 21, 35, 42). Drying and rewetting (DR) resulted in higher Nmin levels compared to CM towards the end of the incubation. Considerable amounts of Nbio were susceptible to mineralization as a result of soil drying (i.e., drying enhanced the turnover of Nbio), and significantly lower Nbio values were found for DR at the end of each drying period. Immediately after biomass incorporation into the soil (day 0), 22 % of the applied 15N was found in the Nmin pool. Some of this 15Nmin must have been derived from dead cells of the applied microbial biomass as only about 80 % of the microbes in the biomass suspension were viable, and only 52 % of the 15Nbio was extractable (using the fumigation‐extraction method). The increase in 15Nmin was higher than for unlabeled Nmin, indicating that added labeled biomass was mineralized with a higher rate than native biomass during the first drying period. Overall, the effect of drying and rewetting on soil N turnover was more pronounced for treatment DR compared to CM during the second drying‐rewetting cycle, resulting in a higher flush of mineralization and lower microbial biomass N levels.  相似文献   

3.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

4.
《Soil biology & biochemistry》2001,33(4-5):583-591
Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.  相似文献   

5.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

6.
Forest dieback caused by climate-change associated stresses and insect outbreaks has emerged as a global concern, and the biogeochemical consequences of this phenomenon need to be elucidated. We measured biological and chemical traits of soil beneath live trees or trees recently killed by a mountain-pine-beetle outbreak in a subalpine coniferous forest in the Front Range of Colorado. We focused on the top 5 cm of mineral soil just beneath the O horizon and measured microbial biomass, soil invertebrate abundance and composition, and soil chemical characteristics. With the termination of inputs from rhizodeposition, mycorrhizal fungal turnover and fine root turnover, soil total carbon (C) and total nitrogen (N) in the mineral soil at three sites decreased by 38–49% and 26–45%, respectively. Tree mortality was associated with reduced soil microbial biomass but soil nematode and microarthropod densities were unchanged. Nematode trophic structure was altered with an increased proportion of bacterial feeders. Soil inorganic N concentrations were inversely correlated to microbial C:N ratios. Tree death was associated with increased soil pH, a possible loss of calcium (Ca2+), but an accumulation of soil inorganic N, largely as NH4+. Our results suggest that forest dieback results in rapid C and N loss from surface mineral soils and that the accumulation of soil inorganic N, the reduction in microbial biomass, and the more bacterial-based soil food web increase the potential of enhanced N loss from affected ecosystems.  相似文献   

7.
《Soil biology & biochemistry》2012,44(12):2450-2456
Forest dieback caused by climate-change associated stresses and insect outbreaks has emerged as a global concern, and the biogeochemical consequences of this phenomenon need to be elucidated. We measured biological and chemical traits of soil beneath live trees or trees recently killed by a mountain-pine-beetle outbreak in a subalpine coniferous forest in the Front Range of Colorado. We focused on the top 5 cm of mineral soil just beneath the O horizon and measured microbial biomass, soil invertebrate abundance and composition, and soil chemical characteristics. With the termination of inputs from rhizodeposition, mycorrhizal fungal turnover and fine root turnover, soil total carbon (C) and total nitrogen (N) in the mineral soil at three sites decreased by 38–49% and 26–45%, respectively. Tree mortality was associated with reduced soil microbial biomass but soil nematode and microarthropod densities were unchanged. Nematode trophic structure was altered with an increased proportion of bacterial feeders. Soil inorganic N concentrations were inversely correlated to microbial C:N ratios. Tree death was associated with increased soil pH, a possible loss of calcium (Ca2+), but an accumulation of soil inorganic N, largely as NH4+. Our results suggest that forest dieback results in rapid C and N loss from surface mineral soils and that the accumulation of soil inorganic N, the reduction in microbial biomass, and the more bacterial-based soil food web increase the potential of enhanced N loss from affected ecosystems.  相似文献   

8.
Nutrient mobilisation in the rhizosphere is driven by soil microorganisms and controlled by the release of available C compounds from roots. It is not known how the quality of release influences this process in situ. Therefore, the present study was conducted to investigate the amount and turnover of rhizodeposition, in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released at different growth stages of peas (Pisum sativum L.) and oats (Avena sativa L.). Plants were grown in soil columns placed in a raised bed under outdoor conditions and simultaneously pulse labelled in situ with a 13C-glucose-15N-urea solution using a stem feeding method. After harvest, 13C and 15N was recovered in plant parts and soil pools, including the microbial biomass. Net rhizodeposition of C and N as a percentage of total plant C and N was higher in peas than in oats. Moreover, the C-to-N ratio of the rhizodeposits was lower in peas, and a higher proportion of the microbial biomass and inorganic N was derived from rhizodeposition. These results suggest a positive plant-soil feedback shaping nutrient mobilisation. This process is driven by the C and N supply of roots, which has a higher availability in peas than in oats.  相似文献   

9.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

10.
Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial responses and keep other soil properties constant. The evolution of CO2 during 1 and 3 days following rewetting of dried soil was highly related to CO2 evolution during 10 days following chloroform fumigation (r2 = 0.92 and 0.93, respectively) which is a widely used method for soil microbial biomass C, which disrupts cellular membranes. This study suggest that the release of CO2 following rewetting of dried soil with no amendments other than heat and water can be highly indicative of soil microbial activity and possibly be used as a quantitative measurement of soil biological quality in Houston Black soils.  相似文献   

11.
Periods of prolonged summer drought are likely to be expected for this century, with possibly strong effects on carbon (C) and nitrogen (N) mineralization in soils. Drought generally reduces mineralization rates, but the possibility of excess mineralization pulses during rewetting raises the question about the net effect of drying-rewetting events. In this experiment, we measured C and N mineralization in undisturbed soil columns that were either kept under continuously moist conditions (control) or that were subjected to drying-rewetting. We had three treatments (D1-D3) with different drying intensity (increasing from D1 to D3) but uniform rewetting intensity (4 mm d−1). Soil columns were taken from a Norway spruce forest in Bavaria, Germany. The CO2 fluxes from control and treatment groups were identical before drying. Over the 80 d drought period, total CO2 emissions from D1, D2, and D3 were only 72, 52 and 43% of that from the control, respectively. Rewetting resulted in a fast increase of CO2 fluxes to approx. the same level as in the control. Rewetting could not restore soil moisture of the dry soil to the level of the control, presumably because of preferential flow and water repellency of soil organic matter. No significant excess C mineralization during the 40 d rewetting period was observed. Adding up total CO2 fluxes during drought and rewetting period, the treatments D1, D2, and D3 emitted only 88, 71 and 67% of the CO2 emitted by the control. Measurements of dissolved organic carbon (DOC) did only show minor differences between control and treatment columns, indicating that no significant accumulation of DOC took place during the drought period. Radiocarbon signature of emitted CO2 indicated that C mineralization was reduced with decreasing water availability and no new substrate became bioavailable. Net N mineralization over the course of the whole experiment was reduced by drought to 77, 65 or 52% of the control. Net nitrification was virtually zero during drought whereas net ammonification continued at reduced levels. In summary, we found that drying-rewetting generally reduced C and N mineralization in this soil and that the total reduction increased with drought intensity.  相似文献   

12.
干湿交替对水稻土碳氮矿化的影响   总被引:9,自引:1,他引:8  
刘艳丽 《土壤》2008,40(4):554-560
通过室内培育试验,研究干湿交替条件下长期不同施肥处理水稻土微生物生物量和理化性状变化对土壤C、N矿化的影响机制.结果表明,与连续淹水(Cw)处理相比,干燥处理不仅显著地提高了所有施肥处理土壤有机C的矿化速率,其幅度为78%~204%,而且也提高了各处理土壤微生物生物量C和N,其幅度分别为55%~77%和57%~72%;干燥后淹水处理土壤有机C矿化速率的提高幅度为74%~95%,呈先降低再升高的趋势.土壤N的矿化在干湿交替过程的干燥处理中降低34%~78%:干燥后淹水过程仅使NPK处理的升高21%,而CK和NPKOM处理分别降低5%和13%.在培养过程中土壤Eh值仅在-60~60 mV范围时,与土壤微生物生物量C之间有显著的负相关关系.在干湿交替的干燥过程,随土壤pH值的升高土壤微生物生物量C有增加的趋势,在淹水条件下土壤pH值则仅与NPKOM处理土壤微生物生物量C之间有明显的负相关关系.干湿交替条件下土壤 pH和 Eh 值、微生物群落组成和数量与有机质的矿化之间的相互作用关系复杂,三者间的作用机理需进一步研究.  相似文献   

13.
Grassland ecosystems in south-eastern Australia are important for dairy and livestock farming. Their productivity relies heavily on water availability, as well as the ecosystem services provided by soil microbial communities including carbon and nutrient cycling. Management practices such as compost application are being encouraged as a means to improve both soil water holding capacity and fertility, thereby buffering against the impacts of increasing climate variability. Such buffering consists of two complementary processes: resistance, which measures the ability of an ecosystem to maintain community structure and function during a period of stress (such as drying); and resilience, which measures the ability of an ecosystem to recover community structure and function post-stress. We investigated the effects of compost on the resistance and resilience of the grassland soil ecosystem under drying and drying with rewetting events, in a terrestrial model ecosystem. Overall, compost addition led to an increase in soil moisture, greater plant available P and higher plant δ15N. Soil C:nutrient ratios, mineral N content (NH4+ and NO3) and soil microbial PLFA composition were similar between amended and unamended soils. Rainfall treatment led to differences in soil moisture, plant above-ground and below-ground biomass, plant δ15N, soil mineral N content (NH4+ and NO3) and microbial biomass C, N and P composition but had no effects on soil C:nutrient ratios, plant available P and soil microbial PLFA composition. There was little interaction between rainfall and compost. Generally, the soil microbial community was resistant and resilient to fluctuations in rainfall regardless of compost amendment. However, these properties of the soil microbial community were translated to resilience and not resistance in soil functions. Overall, the results below-ground showed much greater response to rainfall than compost amendment. Water was the key factor shaping the soil microbial community, and nutrients were not strong co-limiting factors. Future projections of increasing rainfall variability will have important below-ground functional consequences in the grassland, including altered nutrient cycling.  相似文献   

14.
Grain legumes in crop rotations cause significant increases in yield for succeeding non-legumes, which cannot be explained simply by the small effect that legumes have on the soil nitrogen balance, as found in the analysis of N in crop residues. Besides known positive non-N-effects, other effects, mainly rhizodeposition and its contribution to the N balance and nitrogen dynamics after harvesting the grain, are poorly understood. In this study, N rhizodeposition, defined as root-derived N in the soil after removal of visible roots, was measured in faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.). In a pot experiment the legumes were pulse labelled in situ with 15N urea using a cotton wick method. About 84% of the applied 15N was recovered for the three legume species at maturity. The 15N was comparatively uniformly distributed among plant parts. The N rhizodeposition constituted 13% of total plant N for faba bean and pea and 16% for white lupin at maturity, about 80% of below ground plant N, respectively. Some 7% (lupin)-31% (pea) of the total N rhizodeposits were recovered as micro-roots by wet sieving (200 μm) the soil after all visible roots had been removed. Only 14-18% of the rhizodeposition N was found in the microbial biomass and a very small amount of 3-7% was found in the mineral N fraction. In pea, 48% and in lupin 72% of N rhizodeposits could not be recovered in the mentioned pools and a major part of the unrecovered N was probably immobilised in microbial residues. The results of this study clearly indicate that N rhizodeposition from grain legumes represent a significant pool for N balance and N dynamics in crop rotations.  相似文献   

15.
Drying and rewetting cycles are known to be important for the dynamics of carbon (C), phosphorus (P), and nitrogen (N) in soils. This study reports the short‐term responses of these nutrients to consecutive drying and rewetting cycles and how varying soil moisture content affects microbial biomass C and P (MBC and MBP), as well as associated carbon dioxide (CO2) and nitrous oxide (N2O) emissions. The soil was incubated for 14 d during which two successive drying–rewetting episodes were imposed on the soils. Soils subjected to drying (DRW) were rewetted on the seventh day of each drying period to return them to 60% water holding capacity, whilst continually moist samples (M), with soil maintained at 60% water holding capacity, were used as control samples. During the first seven days, the DRW samples showed significant increases in extractable ammonium, total oxidized nitrogen, and bicarbonate extractable P concentrations. Rewetting after the first drying event produced significant increases only in CO2 flux (55.4 µg C g?1 d?1). The MBC and MBP concentrations fluctuated throughout the incubation in both treatments and only the second drying–rewetting event resulted in a significantly MBC decrease (416.2 and 366.8 mg kg?1 in M and DRW soils, respectively). The two drying–rewetting events impacted the microbial biomass, but distinguishing the different impacts of microbial versus physical impacts of the perturbation is difficult. However, this study, having a combined approach (C, N, and P), indicates the importance of understanding how soils will react to changing patterns of drying–rewetting under future climate change.  相似文献   

16.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   

17.
The cycling of root-deposited photosynthate (rhizodeposition) through the soil microbial biomass can have profound influences on plant nutrient availability. Currently, our understanding of microbial dynamics associated with rhizosphere carbon (C) flow is limited. We used a 13C pulse-chase labeling procedure to examine the flow of photosynthetically fixed 13C into the microbial biomass of the bulk and rhizosphere soils of greenhouse-grown annual ryegrass (Lolium multiflorum Lam.). To assess the temporal dynamics of rhizosphere C flow through the microbial biomass, plants were labeled either during the transition between active root growth and rapid shoot growth (Labeling Period 1), or nine days later during the rapid shoot growth stage (Labeling Period 2). Although the distribution of 13C in the plant/soil system was similar between the two labeling periods, microbial cycling of rhizodeposition differed between labeling periods. Within 24 h of labeling, more than 10% of the 13C retained in the plant/soil system resided in the soil, most of which had already been incorporated into the microbial biomass. From day 1 to day 8, the proportion of 13C in soil as microbial biomass declined from about 90 to 35% in rhizosphere soil and from about 80 to 30% in bulk soil. Turnover of 13C through the microbial biomass was faster in rhizosphere soil than in bulk soil, and faster in Labeling Period 1 than Labeling Period 2. Our results demonstrate the effectiveness of using 13C labeling to examine microbial dynamics and fate of C associated with cycling of rhizodeposition from plants at different phenological stages of growth.  相似文献   

18.
Effect of freeze-thaw events on mineralization of soil nitrogen   总被引:15,自引:0,他引:15  
Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.  相似文献   

19.
The effects of adding P and of drying and rewetting were studied in two acid forest soils from southeast Australia. The soils were a yellow podzolic with a low soil organic matter content (3.75% C) and a red earth with a high organic matter content (13.5% C). C and N mineralization and microbial C and N contents were investigated in a laboratory incubation for 151 days. Microbial C and N were estimated by a hexanol fumigation-extraction technique. Microbial C was also determined by substrate-induced respiration combined with a selective inhibition technique to separate the fungal and the bacterial biomass. The results obtained by the selective inhibition technique were not conclusive. Adding P to the soil and drying and rewetting the soil reduced microbial N. This effect was more pronounced in rapidly and frequently dried soils. Microbial C was generally less affected by these treatments. Compared with the control, the addition of P caused a reduction in respiration in the red earth (-13%) but an increase in the yellow podzolic soil (+12%). In the red earth net N mineralization was highest following the addition of P. In the yellow podzolic soil highest N mineralization rates were obtained when the soil was subjected to drying and rewetting cycles. In both soils increased N mineralization was associated with a decrease in microbial N, indicating that the mineralized N was of microbial origin. Nitrification decreased with rapid drying and rewetting. The addition of P promoted heterotrophic nitrification in both soils.  相似文献   

20.
The dominant pools of C and N in the terrestrial biosphere are in soils, and understanding what factors control the rates at which these pools cycle is essential in understanding soil CO2 production and N availability. Many previous studies have examined large scale patterns in decomposition of C and N in plant litter and organic soils, but few have done so in mineral soils, and fewer have looked beyond ecosystem specific, regional, or gradient-specific drivers. In this study, we examined the rates of microbial respiration and net N mineralization in 84 distinct mineral soils in static laboratory incubations. We examined patterns in C and N pool sizes, microbial biomass, and process rates by vegetation type (grassland, shrubland, coniferous forest, and deciduous/broadleaf forest). We also modeled microbial respiration and net N mineralization in relation to soil and site characteristics using structural equation modeling to identify potential process drivers across soils. While we did not explicitly investigate the influence of soil organic matter quality, microbial community composition, or clay mineralogy on microbial process rates in this study, our models allow us to put boundaries on the unique explanatory power these characteristics could potentially provide in predicting respiration and net N mineralization. Mean annual temperature and precipitation, soil C concentration, microbial biomass, and clay content predicted 78% of the variance in microbial respiration, with 61% explained by microbial biomass alone. For net N mineralization, only 33% of the variance was explained, with mean annual precipitation, soil C and N concentration, and clay content as the potential drivers. We suggest that the high R2 for respiration suggests that soil organic matter quality, microbial community composition, and clay mineralogy explain at most 22% of the variance in respiration, while they could explain up to 67% of the variance in net N mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号