首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Straw residue has been widely applied in the North China Plain agroecosystems due to their positive roles in soil fertility improvement, sustainable production, and climate change mitigation. However, little is known about how straw application alters soil respiration by influencing soil biochemical properties in this region. This is the first study to evaluate the role of soil enzyme activity and glomalin content in the response of soil respiration to straw application at different growth stages in a wheat-maize rotation system.

Materials and methods

Field experiment was conducted in a wheat-maize rotation system and it contained two treatments: straw residue removal (CK) and straw residues application (SR). Soil respiration, moisture, and temperature were measured using LI-8100 at different growth stages during wheat and maize (2013–2015) growing seasons. From 2013 to 2014, soil sample (0–20 cm) was collected at different growth stages during wheat and maize growing seasons and transported to the laboratory. Glomalin content and soil enzyme activity were analyzed by using Bradford and enzyme-labeled meter method, respectively. In addition, we determined soil chemical properties such as soil organic carbon (SOC), soil total N content (TN), ammonium N (NH4 +-N), and nitrate N (NO3 ?-N) concentrations.

Results and discussion

SR significantly increased soil respiration and this promotion effect became more significant after 4-year straw application. Soil respiration exhibited significant seasonal variation and was significantly increased by soil temperature with Q 10 ranging from 1.73 to 2.14 for CK and from 1.51 to 2.28 for SR. Both soil temperature and moisture accounted for 70–72% of the seasonal variation in soil respiration. SR significantly increased easily extractable glomalin-related soil protein during 2013–2014 wheat growing season except jointing stage. In addition, positive and significant effect of SR on activities of β-glucosidase and cellobiohydrolase was observed at initial and vigorous growth stages. Straw application significantly increased TN, but did not significantly influence SOC, NH4 +-N, and NO3 ?-N concentrations.

Conclusions

Our study demonstrated that straw application increased soil respiration by stimulating soil enzyme activities and improving easily extractable glomalin-related soil protein. Straw application is recommended as an agricultural management in the North China Plain because of its role in improving biochemical properties. To improve soil biochemical parameters with a relative low soil respiration rate, further information is necessary about the optimum amount of straw application.
  相似文献   

2.
Thermal gradient apparatus has been used to study enzyme activity and carbon cycling in peat collected seasonally from a Northern upland peatland. A thermal optimum was observed in the peat where maximum carbon-cycling enzyme activities (phenol oxidase and β-glucosidase), phenolic compound concentrations, dissolved organic carbon (DOC) concentrations and microbial respiration (CO2 efflux) were all found in a given season. The thermal optimum for these carbon-cycling processes coincided with the highest ambient soil temperature recorded at the time of peat collection, suggesting microbial acclimation to the external conditions. Under the waterlogged conditions of this experiment, phenol oxidase activites correlated positively with phenolic compounds (winter 0.96, P<0.01; spring 0.92, P<0.001; summer 0.94, P<0.001; autumn 0.88, P<0.001) and β-glucosidase activities with DOC (winter 0.91, P<0.01; spring 0.85, P<0.01; summer 0.92, P<0.001; autumn 0.72, P<0.05). We propose, therefore, that the relative activities of these enzymes is crucial in mobilising DOC from the peat matrix, with implications for carbon exports to the receiving waters (magnitude and molecular weight distribution) and CO2 efflux to the atmosphere. The pronounced seasonality in carbon processing found here, must be taken into account when modelling carbon flux in and from these systems, if responses to climate change are to be predicted satisfactorily. Furthermore, because the optimum activity of these carbon-cycling enzymes shifted with seasonal changes in temperature, it is essential to perform enzyme assays in soil ecological investigations at field temperatures (rather than standardised temperatures), when information on natural process rates is required.  相似文献   

3.
Recent studies have suggested that the organic matter contents of undisturbed soils (under natural vegetation) are in equilibrium with biological and biochemical properties. Accordingly, we hypothesised that such equilibria should be disrupted when soils are subjected to disturbance or stress, and that measurement of this disruption can be expressed mathematically and used as a soil quality index. In this study, we evaluated these hypotheses in soils from the H.J. Andrews Experimental Forest in Oregon. Both O and A horizons were sampled from nine sites in Spring 2005 and Fall 2006. Soil samples were analyzed for enzyme activities (phosphatase, β-glucosidase, laccase, N-acetyl-glucosaminidase, protease and urease), and other biological and chemical properties including N-mineralization, respiration, microbial biomass C (MBC), soil organic carbon (SOC) and total nitrogen content. In addition, soil samples from one old-growth site were manipulated in the laboratory to either simulate chemical stresses (Cu addition or pH alteration) or physical disturbances (wet-dry or freeze-thaw cycles). The results showed variation in biological and biochemical soil properties that were closely correlated with SOC. Multiple regression analysis of SOC levels against all soil properties showed that a model containing only MBC and phosphatase activity could account for 97% of the SOC variation among the sites. The model fit was independent of spatial and temporal variations because covariates such as site, stand age, sampling date, and soil horizon were found to be not statistically significant. Although the application of stress/disturbance treatments inconsistently affected most of the individual biochemical properties, in contrast, the ratio of soil C predicted by the model (Cp), and soil C measured (Cm) was consistently reduced in soils submitted to at least one level of stress and disturbance treatments. In addition, Cp/Cm was more affected in soils submitted to wet-dry cycles and Cu contamination than to freeze-thaw cycles or shifts in soil pH. Our results confirm previous evidence of a biochemical balance in high quality undisturbed soils, and that this balance is disrupted when the soil is submitted to disturbances or placed under stress conditions. The Cp/Cm ratio provides a simple reference value against which the degrading effects of pollutants or management practices on soil quality can be assessed.  相似文献   

4.
The annual and seasonal variations in the temperature sensitivity of soil respiration (Rs) were assessed through continuous measurements during the 2004-2006 growing seasons using chamber-based techniques in two sub-alpine forest ecosystems in the Eastern Qinghai-Tibet Plateau, China. The study sites were 40-year-old spruce plantations (Picea asperata) (FSPF) and Faxon Fir Primary Forest (FPF). Our results showed that Q10, regardless of site origin, exhibited a strong seasonal and annual variation pattern, and decreased with soil temperature increase. Estimated Q10 values ranged between 1.16 and 24.3. The maximum, annual, mean Q10 values remained consistent over 3 years, while the highest Q10 values (7.01 in FSPF and 6.39 in FPF) occurred in 2005 (for all sites). There was no significant difference observed among Q10 values between the two forest types in each year (2004-2006) (p = 0.07). Q10 values were fitted well with data of soil temperature using linear regression models, while the correlation between Q10 and soil moisture was not significant (p > 0.1). This study suggested that soil temperature was the dominant factor influencing Q10 values, while soil moisture was a potential contributor to the annual and seasonal variations of Q10 in a sub-alpine forest. Due to the complexity of correlation between Rs and soil moisture, Q10 values derived from annual and seasonal patterns of RS should be used with caution when predicting future soil CO2 emissions under conditions of global warming.  相似文献   

5.
Extracellular enzymes play an important role in the microbial acquisition of carbon (C) and organically bound nutrients, such as nitrogen (N). The objective of the present study was to investigate the effect of different soil moisture contents on potential soil enzyme activities (β-glucosidase and protease), microbial biomass and activity. Soil incubations were carried out with gravimetric moisture contents (GMC) ranging from 0.8 (air-dry) to 30%. After 14 days, respiration, net N mineralization and potential enzyme activities were lowest at GMC below 10% in the unamended samples. In the residue-amended soil, however, respiration and net N mineralization were highest at GMC of 20% or more, while potential β-glucosidase and protease activity were highest at GMC of 10% or less. Increasing the moisture content of air-dry soil after 14 days of incubation resulted in significantly reduced β-glucosidase activity, but increased protease activity. With the exception of the high potential β-glucosidase activity in the residue-amended dry soil, enzyme activities were well correlated with microbial biomass and ergosterol, a biomarker for fungal biomass. Therefore, our results suggest that across the different GMC, protease activity was mainly dependent on the continuous production by microorganisms, while β-glucosidase accumulated in the dry soil due to an increased half-life, which was the result of interactions with soil colloids. Shifts in microbial community composition may also have contributed to the observed differences.  相似文献   

6.
Invertase, cellulase, phosphatases, protease and β-glucosidase were extracted from permanent pasture soil with 0.2 M phosphate buffer (pH 8) in the presence of 0.2 M EDTA. This extract was further treated with ammonium and salmine sulphates. Attempts were made to fractionate these enzyme activities by gel and anion-exchange chromatography. Specific activities were estimated in all fractions and some characteristics of the purified enzymes (optimum pH, temperature and substrate concentration, and Km and Vmax) were investigated. The results indicated that extracted enzyme activities occurred partly in soil as a carbohydrate-enzyme complex and partly as a humo-carbohydrate complex.  相似文献   

7.
Soil respiration (SR) is highly sensitive to future climate change, and particularly to global warming. However, considerable uncertainties remain associated with the temperature sensitivity of SR and its controlling processes. Using 384 field measurement data from 114 published papers and one book, this study quantifies the variation in the seasonal Q10 values of soil respiration, the multiplier by which respiration rates increase for a 10 °C increase in temperature, and its drivers across different sites. No significant correlation between Q10 and mean annual temperature or mean annual precipitation is found when statistically controlling seasonal changes in vegetation activity, deduced from satellite vegetation greenness index observations (normalized difference vegetation index, or NDVI). In contrast, the seasonal amplitude of NDVI is significantly and positively correlated with the apparent Q10 of SR. This result indicates that the variations of seasonal vegetation activity exert dominant control over the variations of the apparent Q10 of SR across different sites, highlighting the ecological linkage between plant physiological processes and soil processes. It further implies that the seasonal variation of vegetation activity may thus dominate the apparent seasonal temperature sensitivity. We conclude that the apparent Q10 value of SR estimated from field measurements is generally larger than the intrinsic temperature sensitivity of soil organic matter decomposition, and thus cautions should be taken when applying apparent Q10 values directly in ecosystem models. Our regression analysis further shows that when the amplitude of NDVI variation approximates 0 (and thus when the seasonality in vegetation activity is marginal), the residual Q10 of SR for soil temperature measured at 5 cm depth is about 1.5.  相似文献   

8.
Alkaline and acid phosphomonoesterase, β-glucosidase, arylsulfatase, protease and urease activities, CO2-C evolution and ATP content were monitored in long-term Cd-contaminated (0-40 mg Cd kg−1 dry weight soil) sandy soils, kept under maize or ‘set aside’ regimes, amended with plant residues. The organic matter input increased soil respiration, ATP contents and hydrolase activities in all soils. However, the Cd-contaminated soils had significantly higher metabolic quotients (qCO2), as calculated by the CO2-to-ATP ratio, and significantly lower hydrolase activities and hydrolase activity-to-ATP ratios for alkaline phosphomonoesterase, arylsulfatase and protease activities, compared with the respective uncontaminated soils. The ratios between acid phosphomonoesterase, β-glucosidase and urease activities and ATP were unaffected. A significantly higher qCO2/μ ratio, an expression of maintenance energy, was observed in most of the contaminated soils, indicating that more energy was required for microbial synthesis in the presence of high Cd concentrations. It was concluded that exposure to high Cd concentrations led to a less efficient metabolism, which was responsible for lower enzyme activity and synthesis and lower hydrolase activity-to-ATP ratios observed in these Cd-contaminated soils.  相似文献   

9.
Water availability strongly affects soil microbial activity and community composition. In a laboratory incubation we investigated the combined effect of soil moisture potential (−10 kPa, −135 kPa, and <−1500 kPa) and plant residue addition on soil enzyme activities (protease, β-glucosidase, β-glucosaminidase and exocellulase) and phospholipid fatty acid (PLFA) profiles. Soil respiration was positively correlated with soil moisture potential and significantly increased with the addition of residue. In the unamended soil, enzyme activities were little affected by soil moisture potential, nor did they change much over time. The addition of residue, however, significantly increased enzyme activity at each moisture level. Furthermore, all four enzyme activities were considerably higher in the amended dry soil than in amended samples with a higher moisture potential. In contrast, in the amended dry soil, respiration and microbial biomass were reduced compared to the amended samples with a higher moisture potential. The low microbial biomass in the amended dry soil was mainly due to a decrease in Gram-negative bacteria, while the fungal biomass reached similar levels at all water potentials. Therefore, shifts in microbial community composition alone cannot explain the increased enzyme activities in the dry soil. Other factors, such as increased fungal activity, stronger interactions between enzymes and soil particles due to thinner water films, may have contributed to the observed effects. Our results suggest that under dry conditions, potential enzyme activities may be decoupled from microbial biomass and respiration in the presence of substrates.  相似文献   

10.
The purpose of this experiment was to evaluate whether soil storage and processing methods significantly influence measurements of potential in situ enzyme activity in acidic forest soils. More specifically, the objectives were to determine if: (1) duration and temperature of soil storage; (2) duration of soil slurry in buffer; and (3) age of model substrates significantly influence the activity of six commonly measured soil extracellular enzymes using methylumbelliferone (MUB)-linked substrates and l-dihydroxyphenylalanine (l-DOPA). Soil collected and analyzed for enzyme activity within 2 h was considered the best measure of potential in situ enzyme activity and the benchmark for all statistical comparisons. Sub-samples of the same soil were stored at either 4 °C or −20 °C. In addition to the temperature manipulation, soils experienced two more experimental treatments. First, enzyme activity was analyzed 2, 7, 14, and 21 days after collection. Second, MUB-linked substrate was added immediately (i.e. <20 min) or 2 h after mixing soil with buffer. Enzyme activity of soil stored at 4 °C was not significantly different from soil stored at −20 °C. The duration of soil storage was minimal for β-glucosidase, β-xylosidase, and peroxidase activity. N-acetyl-glucosaminidase (NAGase), phosphatase, and phenol oxidase activity appeared to change the most when compared to fresh soils, but the direction of change varied. Likewise, the activities of these enzymes were most sensitive to extended time in buffer. Fluorometric MUB and MUB-linked substrates generally had a 3-day shelf life before they start to significantly suppress reported activities when kept at 4 °C. These findings suggest that the manner in which acidic forest soils are stored and processed are site and enzyme specific and should not initially be trivialized when conducting enzyme assays focusing on NAGase, phosphatase, and phenol oxidase. The activities of β-glucosidase, β-xylosidase, and peroxidase are insensitive to storage and processing methods.  相似文献   

11.
安太堡露天煤矿复垦区不同人工林土壤呼吸特征   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]探讨复垦模式对土壤呼吸作用的影响,同时为矿区复垦土地质量评价、复垦模式的筛选提供数据支撑。[方法]采用动态密闭气室红外CO2分析法对露天煤矿复垦区5块永久性样地土壤呼吸作用及其相关组分的日变化及季节动态进行跟踪测定。[结果]各样地土壤呼吸作用均呈现出明显的季节变化规律,但日变化趋势却各不相同。土壤呼吸速率日变化在5,9,10月份变幅较为平缓,6,7,8月份变幅较大,且在7,8月份达到最大值。去根系后,土壤温度及水分与未处理之间没有显著差异,但土壤呼吸速率值明显下降,下降幅度为19%~46%。土壤总呼吸速率和去根系土壤呼吸速率均与土壤温度、土壤水分、双因子呈幂或指数函数关系。[结论]刺槐纯林模式更有利于土壤的熟化与肥力的提高。  相似文献   

12.
A novel approach allowing on-site high throughput enzyme activity measurements by fluorogenic model substrates was applied to study the functioning of enzymes involved in biochemical cycling of nutrients in boreal forest soil ecosystems. The examined enzymes comprised α-glucosidase, β-glucosidase, β-xylosidase, β-cellobiosidase, N-acetyl-glucosamidase, acetate-esterase, butyrate-esterase, phosphomonoesterase, sulphatase and aminopeptidase, whereby spatial and seasonal variation of their activity was investigated over nine seasons in 2 years. The studied sites of boreal podzolized soil of Pinus sylvestris and Picea abies forest were located in central Finland. Activity of all enzymes except sulphatase was highest in the humus layer in all seasons. Maximum sulphatase activity was located below the humus layer in the soil column. Annual activities of acetate-esterase, butyrate-esterase, β-glucosidase and phosphomonosterase calculated to in situ temperature during the year were 480-700, 690-950, 110-190 and 110-200 mol m−2 year−1, respectively. They were up to 100 fold higher than the other six measured activities. The overall turnover capacity of the enzymes was >1000 mol of ester linked carbon, >700 mols carbon from different carbohydrates, 100-200 mol of ester linked phosphate, 10-40 mol of ester linked sulphate m−2 year−1. Winter time (November-April) contributed from 7 to 32% to the annual turnover capacity indicating important enzyme activities also during a cold period of the year. Clear-cutting of the tree stand did not adversely affect enzyme activities related to the cycling of carbon, nitrogen, sulphur and phosphorus during the year. The pH optimum for hemicellulose and cellulose hydrolysing enzymes was pH 3-4 and the pH optimum of phosphomonoesterase, sulphatase, aminopeptidase and N-acetyl-glucosamidase was 4-5. This shows that the hydrolytic activities were adapted to the acid pH-values of the soils. The soil hydrolytic potential was many fold higher as compared to the actual amount of litter it received in the P. sylvestris and P. abies forests.  相似文献   

13.
Plant effects on ecosystem processes are mediated through plant-microbial interactions belowground and soil enzyme assays are commonly used to directly relate microbial activity to ecosystem processes. Live plants influence microbial biomass and activity via differences in rhizosphere processes and detrital inputs. I utilized six grass species of varying litter chemistry in a factorial greenhouse experiment to evaluate the relative effect of live plants and detrital inputs on substrate-induced respiration (SIR, a measure of active microbial biomass), basal respiration, dissolved organic carbon (DOC), and the activities of β-glucosidase, β-glucosaminidase, and acid phosphatase. To minimize confounding variables, I used organic-free potting media, held soil moisture constant, and fertilized weekly. SIR and enzyme activities were 2-15 times greater in litter-addition than plant-addition treatments. Combining live plants with litter did not stimulate microbial biomass or activity above that in litter-only treatments, and β-glucosidase activity was significantly lower. Species-specific differences in litter N (%) and plant biomass were related to differences in β-glucosaminidase and acid phosphatase activity, respectively, but had no apparent effect on β-glucosidase, SIR, or basal respiration. DOC was negatively related to litter C:N, and positively related to plant biomass. Species identity and living plants were not as important as litter additions in stimulating microbial activity, suggesting that plant effects on soil enzymatic activity were driven primarily by detrital inputs, although the strength of litter effects may be moderated by the effect of growing plants.  相似文献   

14.
Intensive studies reveal that there is much uncertainty regarding how ecosystem and soil respiration will respond to warming and grazing, especially in the alpine meadow ecosystem. We conducted a first of its kind field-manipulative warming and grazing experiment in an alpine meadow on the Tibetan plateau to determine the effects of warming and grazing on ecosystem and soil respiration for 3-years, from 2006 to 2008. Generally, warming and grazing did not affect seasonal average ecosystem respiration (Re), and there was no interaction between grazing and warming. However, they significantly affected the Re early in the growing season and by the end of the growing season. Warming significantly increased seasonal average soil respiration (Rs) by 9.2%, whereas the difference mainly resulted from data gathered early in the growing season, before June 2007. Positive correlations between soil temperature and Re and Rs were observed, and soil temperature explained 63-83% of seasonal Re variations during the 3-year study and 19-34% of Rs variations in 2007. Seasonal Re in 2008 and Rs in 2007 were slightly negatively correlated to soil moisture, but interannual average Re decreased with a decrease in precipitation for all treatments. Warming and grazing reduced the Q10 value of Re in 2007 and 2008 but did not affect the Q10 value of Rs. The Q10 values of Rs were much lower than the Q10 values of Re in 2007. These results suggest that grazing may reduce the temperature sensitivity of Re and that Re was mainly controlled by soil temperature rather than moisture which varied with timescale in the alpine meadow.  相似文献   

15.
[目的]探讨不同植被类型土壤呼吸特征及其温度敏感性,为陆地生态系统碳循环研究提供理论支持.[方法]以太行山南麓裸地、草地、灌丛、林地为研究对象,采用长期定位观测和室内化验分析相结合的方法,研究不同季节土壤水热因素、呼吸特征及其温度敏感性.[结果]不同植被类型的土壤温度变化较大,均表现为1月初最低,8月下旬最高,8月以后...  相似文献   

16.
The rationale of the study was to investigate microbial activity in different soil horizons in European forests. Hence, activities of chitinase and cellulase, microbial biomass carbon (Cmic) and basal respiration were measured in litter, fragmentation, humus and mineral soil layers collected several times from various beech and spruce forests. Sites were selected to form a gradient in N availability. Analyses were also performed on beech litter from a litterbag transplant experiment. Furthermore, microbiological parameters were measured in horizons of beech and spruce chronosequence sites with different stand age in order to investigate the influence of forest rotation, and hence changes in soil organic matter (SOM) dynamics, on microbial activity. Finally in horizons of one beech forest, the seasonal variation of selected microbiological parameters was measured more intensively. β-Glucosaminidase and cellobiohydrolase activities were measured using fluorogenic 4-methylumbelliferyl substrates to estimate chitinase and cellulase activities, respectively. On a spatial scale, chitinase and cellulase activities, Cmic determined by substrate induced respiration, and basal respiration ranged from 144 to 1924 and 6-177 nmol 4-MU g−1 org-C h−1, 8-48 mg C g−1 org-C and 11-149 μg CO2-C g−1 org-C h−1, respectively; in general values were significantly lower in layers of humus and mineral soil than of litter. Chitinase activity, Cmic and basal respiration from humus and mineral soil layers, together, correlated positively, while none correlated with cellulase activity. Similarly in the litter layer, no correlations were found between the microbiological parameters. On a seasonal scale, a time lag between a burst in basal respiration rate and activities of both enzymes were observed. In general, activities of cellulase and chitinase, Cmic and basal respiration, did not change with stand age, except in the humus layer in the spruce chronosequence, where Cmic decreased with stand age. In the litter layer, cellulase activity was significantly and positively related to the C:N ratio, while only a tendency for chitinase activity was shown, indicating that enzyme activities decreased with increasing N availability. In accordance, the enzyme activities and Cmic decreased significantly with increasing chronic N deposition in the humus layer, while basal respiration only tended to decrease with increasing N deposition. In contrast, enzyme activities in beech litter from litterbags after 2 years of incubation were generally higher at sites with higher N deposition. The results show different layer-specific responses of enzyme activities to changes in N availability, indicating different impacts of N availability on decomposition of SOM and stage of litter decomposition.  相似文献   

17.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis.  相似文献   

18.

Purpose

The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil.

Materials and methods

A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225?kg?N?ha?1 (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225?kg?N?ha?1 (PN). Soil CO2 and N2O fluxes were measured using the static closed chamber method.

Results and discussion

Cumulative CO2 emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27?Mg?C?ha?1, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO2 fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q 10) of soil respiration was 2.16?C2.47 for unplanted soil but increased to 3.16?C3.44 in planted soil. N addition reduced the Q 10 of native SOC decomposition possibly due to low labile organic C but increased the Q 10 of soil respiration due to the stimulation of maize growth. The estimated annual CO2 emission in N-fertilized soil was 1.28?Mg?C?ha?1 and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53?Mg?C?ha?1) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N2O emissions, the global warming potential of N2O and CO2 emissions in N-fertilized soil was significantly lower than in N-unfertilized soil.

Conclusions

The stimulatory or inhibitory effect of N fertilization on soil respiration and basal respiration may depend on labile organic C concentration in soil. The inhibitory effect of N fertilization on native SOC decomposition was mainly associated with low labile organic C in tested black soil. N application could reduce the global warming potential of CO2 and N2O emissions in black soil.  相似文献   

19.
We examined landscape-level variation in temperature sensitivity of labile SOC across 71 sites at a central North American grassland. The observed range in activation energy of decomposition (Ea), an index of temperature sensitivity, was as great at the landscape scale as has been observed at the continental scale. Ea was lower for soils with more labile C, consistent with the ‘Carbon quality-temperature’ hypothesis. Soil pH explained 67% of the variation in Ea. Although there are strong environmental correlates with the Ea of SOC decomposition at landscape scales, the amount of variation within landscapes could confound regional- to global-scale predictions of the response of soil C to warming.  相似文献   

20.
Little work has been done to quantify annual soil CO2 effluxes in the High Arctic region because of the difficulty in taking winter measurements. Since the effects of climate change are expected to be higher in Arctic than in temperate ecosystems, it is important that summer measurements are extended to cover the entire year. This study evaluates the quantity and quality of soil organic C (SOC) and seasonal controls of soil CO2 effluxes in three soils under three dominating types of vegetation (Dryas, Cassiope, and Salix) at Svalbard. Measurements included soil CO2 effluxes in the field and the laboratory, temperature, water content, and snow thickness. About 90% of the variation in soil respiration throughout 1 year was due to near-surface soil temperatures which ranged from −12 to +12 °C. Total annual soil CO2 effluxes varied from 103 g C m−2 at soils under Cassiope, 152 g C m−2 under Dryas sites, and 176 g C m−2 under Salix, with 20%, 14%, and 30%, respectively, being released during a 6-month winter period. The sensitivity of soil respiration with respect to soil temperature was the same year round and differences in winter CO2 effluxes at the three vegetation types were mainly related to subsurface soil temperatures controlled by snow depth. The quantity and quality of soil organic matter varied under the different vegetation types. Soils under Salix had the largest and most labile pool of SOC and were characterized by a long period of snow cover. In contrast, soils under Cassiope were more nutrient-poor, more acidic and held the smallest amount of total and labile SOC, whereas soils under Dryas remained snow-free most of the winter and therefore had the coldest winter conditions. Thus, winter soil respiration rates under Dryas and Cassiope were significantly lower than those under Salix; under Dryas this was mainly due to snow depth, under Cassiope this was a combination of snow depth and poor litter quality. It is concluded that winter respiration is highly variable across Arctic landscapes and depends on the spatial distribution of snow, which acts as a direct control on soil temperatures and indirect on vegetation types and thereby, the amount and quality of soil organic matter, which serve as additional important drivers of soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号