共查询到15条相似文献,搜索用时 62 毫秒
1.
针对非限制条件下奶牛的个体识别,提出了一种基于深度特征与传统特征融合的奶牛识别方法。首先利用Mask R-CNN识别站立和躺卧姿态下的奶牛。其次,用两种方法提取奶牛的特征概率向量:用卷积神经网络(Convolutional neural network, CNN)提取Softmax层概率向量形式的深度特征;人工提取并利用近邻成分分析(Neighbourhood component analysis, NCA)选择传统特征,并将其输入支持向量机(Support vector machine, SVM)模型,输出概率向量。最后对两种特征进行融合,并基于融合后的特征采用SVM对奶牛进行分类。对58头奶牛站立和躺卧姿态的数据集进行了个体识别实验,结果表明,对于站立和躺卧姿态下的奶牛,与单独使用深度特征相比,特征融合方法准确率分别提高约3个百分点和2个百分点;与单独使用传统特征相比,特征融合方法准确率分别提高约5个百分点和10个百分点。站立和躺卧姿态下的奶牛个体识别率分别达到98.66%和94.06%。本文研究结果可为智能奶牛行为分析、疾病检测等提供有效的技术支持。 相似文献
2.
针对基于花纹的奶牛个体识别中纯色或花纹较少的奶牛识别准确率较低的问题,本文提出一种基于步态特征的奶牛个体识别方法。首先,将DeepLabv3+语义分割算法的主干网络替换为MobileNetv2网络,并引入基于通道和空间的CBAM注意力机制,利用改进后模型分割出奶牛的剪影图。然后,将三维卷积神经网络(3D CNN)和双向长短期记忆网络(BiLSTM)构建为3D CNN-BiLSTM网络,并进一步集成自适应时间特征聚合模块(ATFA)生成3D CNN-BiLSTM-ATFA奶牛个体识别模型。最后,在30头奶牛的共1242条视频数据集上进行了奶牛个体识别实验。结果表明,改进后DeepLabv3+算法的平均像素准确率、平均交并比、准确率分别为99.02%、97.18%和99.71%。采用r3d_18作为3D CNN-BiLSTM-ATFA的主干网络效果最优。基于步态的奶牛个体识别平均准确率、灵敏度和精确度分别为94.58%、93.47%和95.94%。奶牛躯干和腿部不同部位进行加权特征融合的个体识别实验表明识别准确率还可进一步提高。奶牛跛足对步态识别效果影响较为明显,实验期间由健康变为跛足和一直跛足的奶牛个体识别准确率分别为89.39%和92.61%。本文研究结果可为奶牛的智能化个体识别提供技术参考。 相似文献
3.
奶牛的躺卧率可以反映奶牛的舒适度和健康情况,躺卧奶牛的个体识别是自动监测奶牛躺卧率的基础。本文提出了一种基于改进YOLO v4模型识别非限制环境下躺卧奶牛个体的方法。为实现对躺卧奶牛全天的准确个体识别,首先对18:00—07:00的图像采用MSRCP(Multi-scale retinex with chromaticity preservation)算法进行图像增强,改善低光照环境下的图像质量。其次,在YOLO v4模型的主干网络中融入RFB-s结构,改善模型对奶牛身体花纹变化的鲁棒性。最后,为提高模型对身体花纹相似奶牛的识别准确率,改进了原模型的非极大抑制(Non-maximum suppression, NMS)算法。利用72头奶牛的图像数据集进行了奶牛个体识别实验。结果表明,相对于YOLO v4模型,在未降低处理速度的前提下,本文改进YOLO v4模型的精准率、召回率、mAP、F1值分别提高4.66、3.07、4.20、3.83个百分点。本文研究结果为奶牛精细化养殖中奶牛健康监测提供了一种有效的技术支持。 相似文献
4.
基于改进YOLO v3模型的挤奶奶牛个体识别方法 总被引:3,自引:0,他引:3
为实现无接触、高精度养殖场环境下奶牛个体的有效识别,提出了基于改进YOLO v3深度卷积神经网络的挤奶奶牛个体识别方法。首先,在奶牛进、出挤奶间的通道上方安装摄像机,定时、自动获取奶牛背部视频,并用视频帧分解技术得到牛背部图像;用双边滤波法去除图像噪声,并用像素线性变换法增强图像亮度和对比度,通过人工标注标记奶牛个体编号;为适应复杂环境下的奶牛识别,借鉴Gaussian YOLO v3算法构建了优化锚点框和改进网络结构的YOLO v3识别模型。从89头奶牛的36790幅背部图像中,随机选取22074幅为训练集,其余图像为验证集和测试集。识别结果表明,改进YOLO v3模型的识别准确率为95.91%,召回率为95.32%,mAP为95.16%, IoU为85.28%,平均帧率为32f/s,识别准确率比YOLO v3高0.94个百分点,比Faster R-CNN高1.90个百分点,检测速度是Faster R-CNN的8倍,背部为纯黑色奶牛的F1值比YOLO v3提高了2.75个百分点。本文方法具有成本低、性能优良的特点,可用于养殖场复杂环境下挤奶奶牛个体的实时识别。 相似文献
5.
6.
为实现非接触、高精度个体识别,本文提出了一种基于牛只脸部RGB-D信息融合的个体身份识别方法。以108头28~30月龄荷斯坦奶牛作为研究对象,利用Intel RealSense D455深度相机采集2334幅牛脸彩色/深度图像作为原始数据集。首先,采用冗余图像剔除方法和自适应阈值背景分离算法进行图像预处理,经增强共得到8344幅牛脸图像作为数据集;然后,分别选取Inception ResNet v1、Inception ResNet v2和SqueezeNet共3种特征提取网络进行奶牛脸部特征提取研究,通过对比分析,确定FaceNet模型的最优主干特征提取网络;最后,将提取的牛脸图像特征L2正则化,并映射至同一特征空间,训练分类器实现奶牛个体分类。测试结果表明,采用Inception ResNet v2作为FaceNet模型的主干网络特征提取效果最优,在经过背景分离数据预处理的数据集上测试牛脸识别准确率为98.6%,验证率为81.9%,误识率为0.10%。与Inception ResNet v1、SqueezeNet网络相比,准确率分别提高1、2.9个百分点;与未进行背景分离的数据集相比,准确率提高2.3个百分点。 相似文献
7.
奶牛的动作行为(进食、躺卧、站立、行走和甩尾)直接或间接地反映了奶牛的健康及生理状况,是奶牛疾病监测及感知奶牛异常的关键,为准确高效地对奶牛行为进行识别,提出了一种融合时间和空间注意信息的多分支并行的CAFNet(ConvNeXt-ACM-FAM)奶牛行为识别模型,该模型在卷积网络ConvNeXt的基础上融合非对称多分支卷积模块(ACM)和特征注意力模块(FAM)。首先,利用ACM划分通道分支提取特征并保留一部分原始特征,防止信息过度丢失。其次,FAM对不同通道的特征进行融合并引入SimAM注意力机制,不增加网络参数的同时增强重要特征的有效提取。实验结果表明,该方法对进食、躺卧、站立、行走和甩尾行为识别准确率分别为95.50%、93.72%、90.26%、86.43%、89.39%,平均准确率为91.06%,参数量相较于原模型减少了1.5×106,浮点运算量减少了3×108,相较于其他模型,本文模型识别平均准确率平均提升8.63个百分点。本文研究成果可为奶牛疾病监测及预防提供技术支持。 相似文献
8.
基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别 总被引:2,自引:0,他引:2
为了提高猕猴桃采摘机器人的工作效率和对猕猴桃复杂生长环境的适应性,识别广域复杂环境下相互遮挡的猕猴桃目标,采用Im-AlexNet为特征提取层的Faster R-CNN目标检测算法,通过迁移学习微调AlexNet网络,修改全连接层L6、L7的节点数为768和256,以解决晴天(白天逆光、侧逆光)、阴天及夜间补光条件下的广域复杂环境中猕猴桃因枝叶遮挡或部分果实重叠遮挡所导致的识别精度较低等问题。采集广域复杂环境中晴天逆光、晴天侧逆光、阴天和夜间补光条件下存在遮挡情况的4类样本图像共1 823幅,建立试验样本数据库进行训练并测试。试验结果表明:该方法对晴天逆光、晴天侧逆光、阴天和夜间补光条件下存在遮挡情况的图像识别精度为96. 00%,单幅图像识别时间约为1 s。在相同数据集下,Im-AlexNet网络识别精度比LeNet、AlexNet和VGG16 3种网络识别精度的平均值高出5. 74个百分点。说明该算法能够降低猕猴桃果实漏识别率和误识别率,提高了识别精度。该算法能够应用于猕猴桃采摘机器人对广域复杂环境下枝叶遮挡或部分果实重叠遮挡的准确识别。 相似文献
9.
《农业装备与车辆工程》2021,59(5)
针对现有的车牌识别方法存在车牌无法定位且车牌字符无法正确分割等情况,提出了一种基于卷积神经网络的车牌识别技术。首先,设计了一套图像处理流程实现车牌定位和字符分割,然后,利用提出的卷积神经网络对车牌字符集进行训练、识别。所提方法可以达到98.54%以上的准确率,极大提高适用性和准确率。 相似文献
10.
病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。 相似文献
11.
基于FTVGG16卷积神经网络的鱼类识别方法 总被引:3,自引:0,他引:3
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。 相似文献
12.
13.
基于卷积神经网络的白背飞虱识别方法 总被引:4,自引:0,他引:4
为了实现白背飞虱虫情信息的自动收集和监测,提出一种基于卷积神经网络的白背飞虱识别方法并进行应用研究。首先,用改进的野外环境昆虫图像自动采集装置,采集田间自然状态下的白背飞虱图像,对所获取的图像进行归一化处理。然后,随机选取1/2图像样本作为训练集、1/4作为测试集。利用5×5卷积核对训练样本进行卷积操作,将所获取的特征图以2×2邻域进行池化操作。再次经过卷积操作和3×3邻域池化操作后,通过自动学习获取网络模型参数和确定网络模型参数,得到白背飞虱的最佳网络识别模型。试验结果显示,利用训练后的网络识别模型,对训练集白背飞虱的识别正确率可达96.17%,对测试集白背飞虱的识别正确率为94.14%。 相似文献
14.
基于迁移学习的卷积神经网络植物叶片图像识别方法 总被引:10,自引:0,他引:10
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(AlexNet、InceptionV3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后将本文方法与支持向量机(SVM)方法、深度信念网络(DBN)方法、卷积神经网络(CNN)方法在ICL数据库进行对比实验。实验使用Tensorflow训练网络模型,实验结果由TensorBoard可视化得到的数据绘制而成。结果表明,利用AlexNet、InceptionV3预训练模型得到的测试集准确率分别为95.31%、95.40%,有效提高了识别准确率。 相似文献
15.
针对自然背景下牧草难识别的问题,提出一种基于双池化与多尺度核特征加权的卷积神经网络牧草识别方法。双池化特征加权结构通过将卷积层输出的特征图分别进行最大值池化和均值池化得到两组特征图,引入特征重标定策略,依照各通道特征图对当前任务的重要程度进行加权,以增强有用特征、抑制无用特征;多尺度核特征加权结构通过在卷积层中同时使用3×3和5×5两种卷积核,并将网络的前几层特征复用后进行加权,以提高重要特征的利用率。对10类牧草图像进行识别实验,结果表明,该方法识别率为94.1%,比VGG-13网络提高了5.7个百分点,双池化与多尺度特征加权有效提高了牧草识别精度。 相似文献