首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

2.
Mangroves form an important ecosystem of Great Nicobar, a continental island in the Bay of Bengal with luxuriant tropical rainforests. The rhizosphere of the mangrove plants of Great Nicobar was investigated for the presence of arbuscular mycorrhizal fungus (AMF) and phosphate solubilising bacteria (PSB). The soils of the Great Nicobar mangroves were silt–clays and were poor in phosphate content. Five species of AMF belonging to the genus Glomus were isolated. The %AMF colonization in the mangrove plants was between 0 and 17%, and the presence of AMF in the aerenchymatous cortex suggests that the mangrove plants may be aiding in AMF survival by providing oxygen. Two strains of phosphate solubilising Pseudomonas aeruginosa were found in the mangrove soils of Great Nicobar. Phosphate solubilisation by the two isolated strains was almost 70% under in vitro conditions. PSB may play a role in the mangrove ecosystems of Great Nicobar by mobilising insoluble phosphate. The plant roots could pick up the released phosphate directly or with the aid of AMF hyphae.  相似文献   

3.
不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响   总被引:18,自引:1,他引:18  
苏友波  林春  张福锁  李晓林 《土壤》2003,35(4):334-338,343
以三叶草为材料,利用3室隔网培养方法,研究了4种AM菌根菌侵染三叶草后对根际土壤酸性和碱性磷酸酶活性以及菌丝酶活性对土壤有机P的影响。结果表明,接种AM菌根菌 (9周) 对根际土壤酸性和碱性磷酸酶活性均有增强作用,但作用强度主要取决于菌丝在土壤中的生长状况,Glomus属菌根菌在整个菌丝室 (0~6cm) 都影响土壤磷酸酶的活性,其活性在整个菌丝室中都比Gigaspora的高。同一属不同种的根际土壤磷酸酶活性差异不大。AM菌根根际土壤磷酸酶对土壤有机P的降解有很强的促进作用。  相似文献   

4.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

5.
The influence of inoculation of soil with a vesicular-arbuscular mycorrhizal fungus (Glomus fasciculatus) and a phosphate-dissolving bacterium (Bacillus circulans) on phosphate solubilization, growth of finger millet (Eleusine coracana) and phosphorus uptake from 32P-labelled tricalcium phosphate and superphosphate were studied. The mycorrhizal plants produced more dry matter and removed more 32P from the soil than non-mycorrhizal plants, but did not show increased 32P activity per unit plant mass. The 30 mm NH4F-HCl extractable 32P (available 32P) in soil, plant 32P activity and total P uptake were enhanced by soil inoculation with the bacterium. In the treatment receiving both inocula a synergistic effect was recorded with increased P uptake and dry matter production.  相似文献   

6.
The effects of soil disturbance and residue retention on the functionality of the symbiosis between medic (Medicago truncatula L.) and arbuscular mycorrhizal fungi (AMF) were assessed in a two-stage experiment simulating a crop rotation of wheat (Triticum aestivum L.) followed by medic. Plants were inoculated or not with the AMF, Glomus intraradices and Gigaspora margarita, separately or together. The contribution of the arbuscular mycorrhizal (AM) pathway for P uptake was determined using 32P-labeled soil in a small hyphal compartment accessible only to hyphae of AMF. In general AM colonization was not affected by soil disturbance or residue application and disturbance did not affect hyphal length densities (HLDs) in soil. At 4 weeks disturbance had a negative effect on growth and phosphorus (P) uptake of plants inoculated with G. margarita, but not G. intraradices. By 7 weeks disturbance reduced growth of plants inoculated with G. margarita or AMF mix and total P uptake in all inoculated plants. With the exception of plants inoculated with G. margarita in disturbed soil at 4 weeks, the AM pathway made a significant contribution to P uptake in all AM plants at both harvests. Inoculation with both AMF together eliminated the negative effects of disturbance on AM P uptake and growth, showing that a fungus insensitive to disturbance can compensate for loss of contribution of a sensitive one. Application of residue increased growth and total P uptake of plants but decreased 32P in plants inoculated with the AMF mix in disturbed soil, compared with plants receiving no residue. The AMF responded differently to disturbance and G. intraradices, which was insensitive to disturbance, compensated for lack of contribution by the sensitive G. margarita when they were inoculated together. Colonization of roots and HLDs in soil were not good predictors of the outcomes of AM symbioses on plant growth, P uptake or P delivery via the AM pathway.  相似文献   

7.
We investigated how the rate of colonization by indigenous arbuscular mycorrhizal fungi (AMF) affects the interaction between AMF, Sinorrhizobium meliloti and Medicago truncatula Gaertn. To generate a differential inoculum potential of indigenous AMF, five cycles of wheat, each of 1 month, were grown in sieved or undisturbed soil before M. truncatula was sown. The early colonization of M. truncatula roots by indigenous AMF was faster in undisturbed soil compared with sieved soil, but by pod-fill the frequency of hyphae, arbuscules and vesicles was similar in both treatments. At this latter stage, M. truncatula grown in undisturbed soil had accumulated a greater biomass in aboveground tissues, had a greater P concentration and derived more N from the atmosphere than plants grown in disturbed soil, although soil compaction resulted in plants having a smaller root system than those from disturbed soil. The difference in plant P content could not be explained by modifications in hydrolytic soil enzymes related to the P cycle as the activity of acid phosphatase was greater in sieved than in undisturbed soil, and the activity of alkaline phosphatase was unaffected by the treatment. Thus, the results observed were a consequence of the different rates of AMF colonization caused by soil disturbance. Together with earlier results for soybean, this study confirms that soil disturbance modifies the interaction between indigenous AMF, rhizobia and legumes leading to a reduced efficacy of the bacterial symbiont.  相似文献   

8.
Phosphate-solubilizing bacteria (PSB) were isolated and characterized from the rhizosphere and bulk soils of Areca catechu plants. A long history of phosphate fertilizer use has elicited a direct effect on the incidence of soil PSB. Their abundance and ability to solubilize insoluble phosphate were significantly greater (P?<?0.0001) in soils with low available phosphorus (P) content than in other soil types. Three efficient PSB strains, namely, ASL12, ASG34, and ADH302, were identified as Acinetobacter pittii, Escherichia coli, and Enterobacter cloacae by characterizing 16S rRNA sequences and biochemical characteristics; they produced gluconic acid at concentrations of 7862.4, 4306.5, and 2663.8 mg L?1, respectively. The highest amount of solubilized P was determined in Pikovskaya (PVK) medium for the bacterial strain ASL12. The secretion of gluconic acid was related to the available P of rhizosphere soils and P solubilization. Under shaded conditions, the application of these three strains significantly improved plant height, shoot and root dry weight, and nutrient uptake of A. catechu seedlings. A further increase in P solubilization was observed by co-inoculating the three strains and also applying tricalcium phosphate (TCP) or aluminum phosphate (AP). A significant (P?<?0.05) correlation was also observed between P-solubilization activity and A. catechu plant growth in pot experiments. Thus, the three strains can be potentially applied as inoculants in tropical and aluminum-rich soils.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting metal-hyperaccumulating plants in the remediation of contaminated soils. However, little information is available about the symbiosis and community composition of AMF associated with manganese (Mn) hyperaccumulator, such as Phytolacca americana, growing on Mn-contaminated soils under natural conditions. Therefore, the objective of this study was to analyze AMF diversity and community composition in P. americana roots growing at an Mn mining site. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in P. americana roots sampled from three Mn mine spoils and one adjacent reference areas. Results obtained showed that mycorrhizal symbionts successfully established even in the most heavily Mn-polluted sites. Root colonization and AMF diversity were significantly negatively correlated with total and extractable Mn concentrations. Principal component analysis (PCA) revealed that Mn contamination impacted AMF diversity, and shaped AMF community structure. Phylogenetic analyses demonstrated that all species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. Some unique sequences that occurred exclusively in heavily polluted sites associated with P. americana may belong to symbiotic fungi with great potential for improving the phytoremediation efficiency of Mn-contaminated soils.  相似文献   

10.
In terrestrial ecosystems, plants are frequently in symbiosis with arbuscular mycorrhizal fungi (AMF) with mineral nutrients and photosynthesis carbon exchanges in between. This research sought to identify the effects of phosphorus (P) levels on the nitrogen (N) uptake via extraradical mycelium (ERM) and the mycorrhizal growth response (MGR) of maize plants within the AMF symbiosis. Pots were separated into root compartments and hyphae compartments (HCs) with two layers of a 30‐μm mesh membrane and an air gap in between, where only hyphae could pass through, to avoid both N diffusion and root growth effects. Maize plants were inoculated with Rhizophagus irregularis with different N fertilization in HCs under two different P fertilization levels. Our results indicated that a strong increase in MGR with low‐P fertilization. The same tendency was not observed with high‐P fertilization, although both had a large increase in P concentration as a potential source of growth in shoot tissue of mycorrhizal plants. Substantial effects (10.5% more N) were observed in the case of high‐P availability for the host plants from ERM fed with N, whereas under low‐P conditions ERM may prioritize P uptake rather than N uptake. The AM fungi increase the uptake of N and P, which are most limiting in the soil with fewer forces from soil resources. In addition, there was still more P accumulated than N due to the high N for ERM with high‐P supply. Low N in HCs corresponded with a lower colonization rate in roots but with high hyphae density in HCs; this result suggest that N and P availability might change the ratio of extraradical to intraradical hyphae length.  相似文献   

11.
ABSTRACT

This experiment aimed to study phosphorus efficiency of six wheat genotypes (Triticum aestivum) inoculated with arbuscular mycorrhizal fungi (AMF) and to quantify the contribution of root and mycorrhizal hyphae length to P uptake by using NST 3.0 model. The results showed that all wheat genotypes with AMF (except V4) attained more than 80% of the maximum shoot yield. NST 3.0 predicted approximately 49% and 30% of observed P uptake for V4 with and without mycorrhizae, respectively, at the lowest P level. Additionally, the predicted values of P uptake increased rapidly with increasing P levels by up to 90% and 89% with and without mycorrhizae, respectively, at the highest P level. The model predicted 58% and 43% of the observed P uptake for V6 with and without mycorrhizae, respectively, at the lowest P level and increased up to 98% and 95% respectively at the highest P level. Soil P depletion zones of plants without mycorrhizal fungi (V4 and V6) did not extend as far as those of plants with mycorrhizal fungi. In conclusion, we recommend that V6 (Gemmeiza12) is suitable for growth in calcareous soil with or without mycorrhizal fungi inoculation (highly P efficient). The results of this study suggest that root growth and mycorrhizal hyphae length are the main parameters suitable for selecting P-efficient wheat genotypes, especially under limited P supplies. The current study clearly shows that (NST 3.0) model provide useful tools for studying the role of (AMF) and root length in plant P uptake.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of Lotus corniculatus L. Specifically, the role of rhizosphere fungal community in the growth of Lotus corniculatus L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with Chaetomium and Humicola showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.  相似文献   

13.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

14.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

15.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

16.
The Caatinga is a unique biome that encompasses nearly 11% of Brazil's territory and contains diverse vegetation composed of trees and bushes that have been scarcely studied from the economic perspective. In this context, Passiflora setacea may constitute a strategic alternative for agriculture because it produces fruit that has commercial potential and is tolerant to some diseases. Some species of Passiflora show more robust growth when associated with arbuscular mycorrhizal fungi (AMF) and are dependent on mycorrhization. In this study, the response of P. setacea to phosphate (P) fertilization and mycorrhization with Claroideoglomus etunicatum was evaluated. The experimental design included eight replicates of four randomized treatments: non-inoculated plants (NI), plants fertilized with phosphorus (P), mycorrhized plants (AMF), and plants that were both fertilized and mycorrhized (P+AMF). The plant height, leaf number, leaf area, fresh biomass (FB), and dry biomass (DB) of the shoots and roots, nutrient content, mycorrhizal colonization (MC), and the number of glomerospores (NG) in the rhizosphere were evaluated. The MC and the NG were reduced by phosphate fertilization. The development of the mycorrhized plants was significantly better than the NI and P treated plants for all of the variables tested. Inoculation with C. etunicatum promoted the growth of P. setacea seedlings even in the absence of phosphate fertilization, reducing production costs and strengthening the potential of P. setacea as a viable agricultural alternative for the semiarid region.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) alter heavy metal acquisition by higher plants and may alter plant response to soil-contaminating heavy metals. Two communities comprised of Glomus intraradices and G. spurcum were investigated for their influence on copper (Cu) and zinc (Zn) resistance of Sorghum bicolor. One community was isolated from a Cu- and Zn-contaminated soil (AMF-C) and one consisted of isolates from non-contaminated soil (AMF-NC). Non-mycorrhizal (NM) sorghum plants were also included. The two community ecotypes differed in their capacity to protect sorghum from Cu and Zn toxicity and exhibited differential metal uptake into hyphae and altered heavy metal uptake by roots and translocation to plant shoots. AMF-C reduced Cu acquisition under elevated Cu conditions, but increased Cu uptake and translocation by sorghum under normal Cu conditions, patterns not exhibited by AMF-NC or NM plants. Hyphae of both fungal ecotypes accumulated high concentrations of Cu under Cu exposure. AMF-C exhibited elevated hyphal Zn accumulation and stimulated Zn uptake and translocation in sorghum plants compared to AMF-NC and NM plants. Differences in metal resistance between fungal treatments and between mycorrhizal and non-mycorrhizal plants were not related to differences in nutrient relations. The enhanced Cu resistance of sorghum and altered patterns of Cu and Zn translocation to shoots facilitated by AMF isolated from the metal-contaminated soil highlight the potential for metal-adapted AMF to increase the phytoremediation potential of mycotrophic plants on metal-contaminated environments.  相似文献   

18.
With the aim to explore the possible role of mineral phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in iron-rich, acidic soils, we conducted a survey of PSB naturally colonizing a limonitic crust in the south-east region of Venezuela (Bolívar State). A total of 130 heterotrophic bacterial isolates showing different degrees of mineral tri-calcium phosphate (Ca3(PO4)2)-solubilizing activities were isolated from NBRIP plates. In contrast, no isolates showing iron phosphate (FePO4)- or aluminum phosphate (AlPO4)-solubilizing activities were detected by this experimental approach. The 10 best Ca3(PO4)2-solubilizers were selected for further characterization. These isolates were shown to belong to the genera Burkholderia, Serratia, Ralstonia and Pantoea by partial sequencing analysis of their respective 16S rRNA genes. All the PSB isolates were able to mediate almost complete solubilization of Ca3(PO4)2 in liquid cultures; in contrast, the PSB isolates were less effective when solubilizing FePO4. Two groups of PSB isolates were clearly differentiated on the basis of their Ca3(PO4)2 solubilization kinetics. Acidification of culture supernatants seemed to be the main mechanism for P solubilization. Indeed, gluconic acid was shown to be present in the supernatant of five isolates. Furthermore, detection of genes involved in the production of this organic acid was possible in three isolates by means of a PCR protocol.  相似文献   

19.
Translocation of S by external hyphae of Glomus fascieulatus, a vesicular-arbuscular (VA) mycorrhizal fungus, was demonstrated. When tracers were injected 8 cm from onion roots in soil chambers, both 35S and 32P appeared in roots of mycorrhizal plants. Neither radionuclide was present in non-mycorrhizal plants.In a second soil-chamber experiment, mycorrhizal onions took up more 35S per unit dry weight than non-mycorrhizal controls when 35S was injected into soil chambers in a region 3–6 cm from roots. Severing of external hyphae between the application area and the roots reduced the concentration of 35S in tops of mycorrhizal plants but not in roots. Volatile 35S per unit dry weight collected from all plants in each treatment was highest in the mycorrhizal-hyphae intact treatment, and higher in the mycorrhizal-hyphae severed treatment than the non-mycorrhizal treatment. Movement of 35S in soil from the area of application to roots was similar for all treatments.Increased uptake of S from soil by VA mycorrhizal plants can result from hyphal translocation of S to infected roots by external mycorrhizal hyphae.  相似文献   

20.
接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明, AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号