首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ABSTRACT

Antecedent soil moisture before freezing can affect greenhouse gases (GHG) fluxes from soils during thaw, but their critical threshold values for GHG fluxes and the underlying mechanisms are still not clear. By using packed soil-core incubation experiments, we have studied nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from a mature broadleaf and Korean pine-mixed forest soil and an adjacent white birch forest soil with nine levels of soil moisture ranging from 10 to 90% water-filled pore space (WFPS) during a 2-month freezing at ?8°C and the following 10-day thaw at 10°C. The threshold values of soil moisture ranged from 50 to 70% WFPS for CH4 uptake and from 70 to 90% WFPS for N2O and CO2 emissions from the two soils during the freeze-thaw period. Under the optimum soil moisture condition, fulvic-like compounds with high bioavailability contributed more than 60% of dissolved organic matter (DOM) in the soil. Cumulative N2O emissions from forest soils during the freeze-thaw period were greatest when the concentration ratio of nitrate-N to dissolved organic carbon (DOC) was 0.04 g N g?1 C. Cumulative soil CO2 emissions and CH4 uptake during the freeze-thaw period were both regulated by the interaction between soil DOC and net N mineralization. The activities of β-1,4-glucosidase and β-1,4-N-acetyl-glucosaminidase, microbial biomass C and N, and the microbial biomass C-to-N ratios, were all significantly correlated to the soil N2O, CO2, and CH4 fluxes. Overall, upon a freeze-thaw period with different soil moistures, GHG fluxes from forest soils were jointly regulated by inorganic N and DOC concentrations, and related to the labile components of DOM released into the soil, which could be strictly controlled by the related microbial properties.  相似文献   

2.
Decomposition of organic matter in inundated wetland soils requires a number of interdependent microbial processes that ultimately generate CO2 and CH4. Largely as the result of anaerobic decomposition, wetland soils store globally significant amounts of organic carbon and are currently net sources of CH4 to the atmosphere. Given the importance of wetlands in the global carbon cycle, it is important to understand controls on anaerobic decomposition in order to predict feedbacks between wetland soils and global climate change. One perplexing pattern observed in many wetland soils is the high proportion of CO2 resulting from anaerobic decomposition that cannot be explained by any measured pathway of microbial respiration. Recent studies have hypothesized that humic substances, and in particular solid-phase humic substances in wetland soils, can support anaerobic microbial respiration by acting as organic electron acceptors. Humic substances may thus account for much of the currently unexplained CO2 measured during decomposition in wetland soils. Here we demonstrate that humic acids extracted from a variety of wetland soils act as either electron donors or electron acceptors and alter the ratio of CO2:CH4 produced during anaerobic laboratory incubations. Our results suggest that soil-derived humic substances may play an important, and currently unexplored, role in anaerobic decomposition in wetland soils.  相似文献   

3.
Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and upland (77%) was divided into 675 grid cells, and each of the cells had unique combination of vegetation, hydrology, soil properties, and topography. Driven by local climate, topography, soil, and vegetation conditions, MIKE SHE was used to generate daily flows as well as water table depth for each grid cell across the watershed. Forest-DNDC was then run for each cell to calculate its biogeochemistry including daily fluxes of the three greenhouse gases (GHGs). The simulated daily average CH4, CO2 and N2O flux from the watershed were 17.9 mg C, 1.3 g C and 0.7 mg N m−2, respectively, during the period from 2003–2007. The average contributions of the wetlands to the CH4, CO2 and N2O emissions were about 95%, 20% and 18%, respectively. The spatial and temporal variation in the modeled CH4, CO2 and N2O fluxes were large, and closely related to hydrological conditions. To understand the impact of spatial heterogeneity in physical and biogeochemical characteristics of the target watershed on GHG emissions, we used Forest-DNDC in a coarse mode (field scale), in which the entire watershed was set as a single simulated unit, where all hydrological, biogeochemical, and biophysical conditions were considered uniform. The results from the field-scale model differed from those modeled with the watershed-scale model which considered the spatial differences in physical and biogeochemical characteristics of the catchment. This contrast demonstrates that the spatially averaged topographic or biophysical conditions which are inherent with field-scale simulations could mask “hot spots” or small source areas with inherently high GHGs flux rates. The spatial resolution in conjunction with coupled hydrological and biogeochemical models could play a crucial role in reducing uncertainty of modeled GHG emissions from wetland-involved watersheds.  相似文献   

4.
It has been well documented that restored wetlands in the Prairie Pothole Region of North America do store carbon. However, the net benefit of carbon sequestration in wetlands in terms of a reduction in global warming forcing has often been questioned because of potentially greater emissions of greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). We compared gas emissions (N2O, CH4, carbon dioxide [CO2]) and soil moisture and temperature from eight cropland and eight restored grassland wetlands in the Prairie Pothole Region from May to October, 2003, to better understand the atmospheric carbon mitigation potential of restored wetlands. Results show that carbon dioxide contributed the most (90%) to net-GHG flux, followed by CH4 (9%) and N2O (1%). Fluxes of N2O, CH4, CO2, and their combined global warming potential (CO2 equivalents) did not significantly differ between cropland and grassland wetlands. The seasonal pattern in flux was similar in cropland and grassland wetlands with peak emissions of N2O and CH4 occurring when soil water-filled pore space (WFPS) was 40-60% and >60%, respectively; negative CH4 fluxes were observed when WFPS approached 40%. Negative CH4 fluxes from grassland wetlands occurred earlier in the season and were more pronounced than those from cropland sites because WFPS declined more rapidly in grassland wetlands; this decline was likely due to higher infiltration and evapotranspiration rates associated with grasslands. Our results suggest that restoring cropland wetlands does not result in greater emissions of N2O and CH4, and therefore would not offset potential soil carbon sequestration. These findings, however, are limited to a small sample of seasonal wetlands with relatively short hydroperiods. A more comprehensive assessment of the GHG mitigation potential of restored wetlands should include a diversity of wetland types and land-use practices and consider the impact of variable climatic cycles that affect wetland hydrology.  相似文献   

5.
Well‐aerated soils are sinks for atmospheric methane (CH4) whereas hydromorphic soils act as sources. Both CH4 oxidation and production are highly sensitive to variation in soil moisture. Significant changes of net CH4 fluxes from soils can therefore be expected to accompany redistribution of precipitation in the course of climate change where more extreme events are predicted for the future. The extreme summer drought in 2003 offered the opportunity to study the impact of such events on methane fluxes under field conditions. The objective was to evaluate the impact of the summer drought in 2003 on net methane budget of a spruce‐forest ecosystem. We studied net CH4 flux (bi‐)weekly during the summers of 2000–2004 using a closed‐chamber technique on six different soil types ranging from well‐aerated Cambisols, to poorly drained Gleysols and a wet Histosol in a cool‐humid spruce forest.  相似文献   

6.
While experimental addition of nitrogen (N) tends to enhance soil fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), it is not known if lower and agronomic-scale additions of urea-N applied also enhance trace gas fluxes, particularly for semi-arid agricultural lands in the northern plains. We aimed to test if this were true at agronomic rates [low (11 kg N ha−1), moderate (56 kg N ha−1), and high (112 kg N ha−1)] for central North Dakota arable and prairie soils using intact soil cores to minimize disturbance and simulate field conditions. Additions of urea to cores incubated at 21 °C and 57% water-filled pore space enhanced fluxes of CO2 but not CH4 and N2O. At low, moderate, and high urea-N, CO2 fluxes were significantly greater than control but not fluxes of CH4 and N2O. The increases in CO2 emission with rate of urea-N application indicate that agronomic-scale N inputs may stimulate microbial carbon cycling in these soils, and that the contribution of CO2 to net greenhouse gas source strength following fertilization of semi-arid agroecosystems may at times be greater than contributions by N2O and CH4.  相似文献   

7.
The climatic changes on earth may have serious implications for the carbon (C) cycle in the terrestrial Arctic throughout the 21st century. Arctic vegetation takes up carbon dioxide (CO2) from the atmosphere producing biomass. In a cold and often moist soil environment, dead organic matter is preferentially preserved as soil organic matter (SOM) due to the inhibition of decomposition processes. However, viable soil microbes exhale huge amounts of CO2 and methane (CH4) annually. Hence, Arctic ecosystems exhibit annual fluxes of both carbon‐based (CO2 and CH4) greenhouse gases (GHGs) that are in an order of magnitude of millions of tons. Rising Arctic temperatures lead to the degradation of much of today's permafrost in the long run. As a result, large quantities of frozen SOM may become available for decomposers, and GHGs that are entrapped in permafrost may be released. At the same time, warming tends to stimulate the growth, development, and reproduction of many Arctic plants, at least transiently. The present northward migration of boreal shrubs and trees into southern tundra areas may be amplified by that, increasing the ecosystems' gross primary production and, thus, their C sequestration. On the other hand, rising temperatures boost SOM decomposition and microbial respiration rates. In general, soil temperature and soil moisture are key environmental variables to control the intensity of aerobic and anaerobic respiration by microbes, and autotrophic respiration by plants. On the basis of published data on Arctic CO2 and CH4 fluxes, the calculations on the terrestrial C‐based Arctic GHG balance made in this review reveal a current annual GHG exchange that ranges between a weak storage of ≤ 225 Tg CO2 equivalent (eq.) y–1 and a huge release of ≤ 1990 Tg CO2 eq. y–1. Hence, the Arctic GHG balance does apparently already contribute positively to the climatic changes at present. Regarding the future, the relative development of the uptake and release of CO2 and CH4 by northern ecosystems is fundamental to the overall GHG status of the Arctic under scenarios of continued climate change.  相似文献   

8.
Northern wetlands are critically important to global change because of their role in modulating atmospheric concentrations of greenhouse gases, especially CO2 and CH4. At present, continuous observations for CO2 and CH4 fluxes from northern wetlands in Asia are still very limited. In this paper, two growing season measurements for CO2 flux by eddy covariance technique and CH4 flux by static chamber technique were conducted in 2004 and 2005, at a permanently inundated marsh in the Sanjiang Plain, northeastern China. The seasonal variations of CO2 exchange and CH4 flux and the environmental controls on them were investigated. During the growing seasons, large variations in net ecosystem CO2 exchange (NEE) and gross ecosystem productivity (GEP) were observed with the range of −4.0 to 2.2 (where negative exchange is a gain of carbon from the atmosphere) and 0-7.6 g C m−2 d−1, respectively. Ecosystem respiration (RE) displayed relatively smooth seasonal pattern with the range of 0.8-4.2 g C m−2 d−1. More than 70% of the total GEP was consumed by respiration, which resulted in a net CO2 uptake of 143 ± 9.8 and 100 ± 9.2 g C m−2 for the marsh over the growing seasons of 2004 and 2005, respectively. A significant portion of the accumulated NEE-C was lost by CH4 emission during the growing seasons, indicating the great potential of CH4 emission from the inundated marsh. Air temperature and leaf area index jointly affected the seasonal variation of GEP and the seasonal dynamic of RE was mainly controlled by soil temperature and leaf area index. Soil temperature also exerted the dominant influence over variation of CH4 flux while no significant relationship was found between CH4 emission and water table level. The close relationships between carbon fluxes and temperature can provide insights into the response of marsh carbon exchange to a changing climate. Future long term flux measurements over the freshwater marsh ecosystems are undoubtedly necessary.  相似文献   

9.
Forty percentage of UK peatlands have been drained for agricultural use, which has caused serious peat wastage and associated greenhouse gas emissions (carbon dioxide (CO2) and methane (CH4)). In this study, we evaluated potential trade-offs between water-table management practices for minimizing peat wastage and greenhouse gas emissions, while seeking to sustain romaine lettuce production: one of the most economically relevant crop in the East Anglian Fenlands. In a controlled environment experiment, we measured lettuce yield, CO2, CH4 fluxes and dissolved organic carbon (DOC) released from an agricultural fen soil at two temperatures (ambient and +2°C) and three water-table levels (−30 cm, −40 cm and −50 cm below the surface). We showed that increasing the water table from the currently used field level of −50 cm to −40 cm and −30 cm reduced CO2 emissions, did not affect CH4 fluxes, but significantly reduced yield and increased DOC leaching. Warming of 2°C increased both lettuce yield (fresh leaf biomass) and peat decomposition through the loss of carbon as CO2 and DOC. However, there was no difference in the dry leaf biomass between the intermediate (−40 cm) and the low (−50 cm) water table, suggesting that romaine lettuce grown at this higher water level should have similar energetic value as the crop cultivated at −50 cm, representing a possible compromise to decrease peat oxidation and maintain agricultural production.  相似文献   

10.
Here we present results from a field experiment in a sub-arctic wetland near Abisko, northern Sweden, where the permafrost is currently disintegrating with significant vegetation changes as a result. During one growing season we investigated the fluxes of CO2 and CH4 and how they were affected by ecosystem properties, i.e., composition of species that are currently expanding in the area (Carex rotundata, Eriophorum vaginatum and Eriophorum angustifolium), dissolved CH4 in the pore water, substrate availability for methane producing bacteria, water table depth, active layer, temperature, etc. We found that the measured gas fluxes over the season ranged between: CH4 0.2 and 36.1 mg CH4 m−2 h−1, Net Ecosystem Exchange (NEE) −1000 and 1250 mg CO2 m−2 h−1 (negative values meaning a sink of atmospheric CO2) and dark respiration 110 and 1700 mg CO2 m−2 h−1. We found that NEE, photosynthetic rate and CH4 emission were affected by the species composition. Multiple stepwise regressions indicated that the primary explanatory variables for NEE was photosynthetic rate and for respiration and photosynthesis biomass of green leaves. The primary explanatory variables for CH4 emissions were depth of the water table, concentration of organic acid carbon and biomass of green leaves. The negative correlations between pore water concentration and emission of CH4 and the concentrations of organic acid, amino acid and carbohydrate carbon indicated that these compounds or their fermentation by-products were substrates for CH4 formation. Furthermore, calculation of the radiative forcing of the species expanding in the area as a direct result of permafrost degradation and a change in hydrology indicate that the studied mire may act as an increasing source of radiative forcing in future.  相似文献   

11.
We quantified spatial and temporal variations of the fluxes of nitrous oxide (N2O) and methane (CH4) and associated abiotic sediment parameters across a subtropical river estuary sediment dominated by grey mangrove (Avicennia marina). N2O and CH4 fluxes from sediment were measured adjacent to the river (“fringe”) and in the mangrove forest (“forest”) at 3-h intervals throughout the day during autumn, winter and summer. N2O fluxes from sediment ranged from an average of −4 μg to 65 μg N2O m−2 h−1 representing N2O sink and emission. CH4 emissions varied by several orders of magnitude from 3 μg to 17.4 mg CH4 m−2 h−1. Fluxes of N2O and CH4 differed significantly between sampling seasons, as well as between fringe and forest positions. In addition, N2O flux differed significantly between time of day of sampling. Higher bulk density and total carbon content in sediment were significant contributors towards decreasing N2O emission; rates of N2O emission increased with less negative sediment redox potential (Eh). Porewater profiles of nitrate plus nitrite (NOx) suggest that denitrification was the major process of nitrogen transformation in the sediment and possible contributor to N2O production. A significant decrease in CH4 emission was observed with increasing Eh, but higher sediment temperature was the most significant variable contributing to CH4 emission. From April 2004 to July 2005, sediment levels of dissolved ammonium, nitrate, and total carbon content declined, most likely from decreased input of diffuse nutrient and carbon sources upstream from the study site; concomitantly average CH4 emissions decreased significantly. On the basis of their global warming potentials, N2O and CH4 fluxes, expressed as CO2-equivalent (CO2-e) emissions, showed that CH4 emissions dominated in summer and autumn seasons (82-98% CO2-e emissions), whereas N2O emissions dominated in winter (67-95% of CO2-e emissions) when overall CO2-e emissions were low. Our study highlights the importance of seasonal N2O contributions, particularly when conditions driving CH4 emissions may be less favourable. For the accurate upscaling of N2O and CH4 flux to annual rates, we need to assess relative contributions of individual trace gases to net CO2-e emissions, and the influence of elevated nutrient inputs and mitigation options across a number of mangrove sites or across regional scales. This requires a careful sampling design at site-level that captures the potentially considerable temporal and spatial variation of N2O and CH4 emissions.  相似文献   

12.
Rice residue management often leads to increased methane (CH4) emissions but the outcomes of edaphic and management factors are not always predictable. Rice residue can act as a substrate for CH4 production; however the role it plays in priming (mineralization) of soil organic matter (SOM) to release additional substrates for CH4 production are not well established. We anaerobically incubated a highly organic soil with 13C-enriched rice straw for 3 months to investigate its priming effect (PE) on SOM and source of C for CH4 production. Anaerobic decomposition of SOM was accompanied by iron (Fe) reduction with minimal CH4 production when straw was absent. Straw addition enhanced Fe reduction and increased CH4 production concurrently with a clear succession of microbial community structure and function assessed with phospholipid fatty acid (PLFA) profiling. The PE on CH4 production from SOM was strong and positive during the entire experiment. Overall, PE on SOM (CO2 plus CH4 production) was slightly positive at the end of the experiment, associated with only a 32% mineralization of the added straw-C (as CO2 plus CH4). Straw addition also released large amounts of dissolved organic carbon (DOC) from SOM. Our results suggest that straw addition effects on PE of SOM and CH4 production can last for a long period of time showing that straw will cause non-linear response in CH4 production and potentially result in significant losses of soil C as DOC by leaching or direct exports in histosols.  相似文献   

13.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

14.
Estimating future fluxes of CH4 between land and atmosphere requires well-conceived process-based biogeochemical models. Current models do not represent the anaerobic oxidation of methane (AOM) in land surface soils, in spite of increasing evidence that this process is widespread. Our objective was to determine whether AOM, or potential AOM, commonly occurs in 20 hydromorphic soils spanning a wide range of chemical properties. Bulk soil samples were collected under shallow water near the shoreline of 15 recently drained fish ponds in southern Bohemia (Czech Republic), as well as from below the water table at 3 peatland locations in northeast Scotland and 2 acid sulfate soils on the southern coast of Finland. Each soil slurry was incubated under both oxic and anoxic conditions, with or without the addition of alternative electron acceptors (SO42− and NO3) or H2PO4. Here, “oxic” and “anoxic” conditions refer to anoxic soil respectively incubated in a headspace containing air or argon. Using the isotope dilution method, we determined the gross production and oxidation rates of CH4 after 2 days incubation under oxic headspace conditions, and after 2, 21 and 60 days incubation under anoxic conditions. Large differences in net CH4 fluxes were observed between soil types and between incubation conditions. AOM was detected in each of the 20 bulk soil samples, which spanned >6 pH units and 2 orders of magnitude in organic C content. Significant positive relationships were found between AOM and gross CH4 production rates under anoxic conditions, resulting in AOM rates that were sometimes higher than CH4 oxidation rates under oxic headspace conditions. There was no relationship between net and gross CH4 production rates, such that 2 soil types could display similar low net rates, yet conceal very large differences in gross rates. The effects of alternative electron acceptors on AOM were idiosyncratic and resulted in no net trend. We did find, however, a negative effect of SO42− and H2PO4 on gross CH4 production rates under anoxic and oxic conditions respectively. Under oxic headspace conditions, CH4 oxidation was related to soil organic C content. Taken collectively, our results suggest that AOM, or potential AOM, is prevalent over a wide range of soil types, that AOM may contribute substantially to CH4 oxidation in soils, and that AOM in soils should be integrated to current process-based CH4 cycling models.  相似文献   

15.
For evaluating the applicability of the soil gradient method as a substitute for CO2‐, CH4‐, and N2O‐flux measurements in steppe, we carried out chamber measurements and determined soil gas concentration at an ungrazed (UG99) and a grazed (WG) site in Inner Mongolia, China. The agreement of the concentration‐based flux estimates with measured chamber‐based fluxes varied largely depending on the respective GHG in the sequence CO2 > CH4 >> N2O. A calibration of the gas‐transport parameter used to calculate fluxes based on soil gas concentrations improved the results considerably for CO2 and CH4. After calibration, the average deviation from the chamber‐based annual cumulative flux for both sites was 11.5%, 10.5%, and 59% for CO2, CH4, and N2O. The gradient method did not constitute an adequate stand‐alone substitute for greenhouse‐gas flux estimation since a calibration using chamber‐based measurements was necessary and vigorous production processes were confined to the uppermost, almost water‐saturated soil layer.  相似文献   

16.
Ecosystem and biogeochemical responses to anthropogenic stressors are the result of complex interactions between plants and microbes. A mechanistic understanding of how plant traits influence microbial processes is needed in order to predict the ecosystem-level effects of natural or anthropogenic change. This is particularly true in wetland ecosystems, where plants alter the availability of both electron donors (e.g., organic carbon) and electron acceptors (e.g., oxygen and ferric iron), thereby regulating the total amount of anaerobic respiration and the production of methane, a highly potent greenhouse gas. In this study, we examined how plant traits associated with plant inputs of carbon (photosynthesis and biomass) and oxygen (root porosity and ferric iron on roots) to mineral soils relate to microbial competition for organic carbon and, ultimately, methane production. Plant productivity was positively correlated with microbial respiration and negatively correlated to methane production. Root porosity was relatively constant across plant species, but belowground biomass, total biomass, and the concentration of oxidized (ferric) iron on roots varied significantly between species. As a result the size of the total root oxidized iron pool varied considerably across plant species, scaling with plant productivity. Large pools of oxidized iron were related to high CO2:CH4 ratios during microbial respiration, indicating that as plant productivity and biomass increased, microbes used non-methanogenic respiration pathways, most likely including the reduction of iron oxides. Taken together these results suggest that increased oxygen input from plants with greater biomass can offset any potential stimulation of methanogenic microbes from additional carbon inputs. Because the species composition of plant communities influences both electron donor and acceptor availability in wetland soils, changes in plant species as a consequence of anthropogenic disturbance have the potential to trigger profound effects on microbial processes, including changes in anaerobic decomposition rates and the proportion of mineralized carbon emitted as the greenhouse gas methane.  相似文献   

17.
《Applied soil ecology》2011,48(3):160-166
We studied the effect of water table on CO2 and CH4 fluxes at different time scales in the littoral zone of Lake Obuchi, a brackish lake in northern Japan. The vegetation formed three distinct zones along the water table gradient, two dominated by emergent aquatic macrophytes (the Phragmites australis-dominated zone and the Juncus yokoscensis-dominated zone) and one dominated by terrestrial macrophytes (Miscanthus sinensis and Cirsium inundatum-dominated zone). To clarify the impact of variations in water table on monthly and yearly summed CO2 and CH4 fluxes, we examined the relationship between water table and the ratio of observed flux to calculated flux, whereby the calculated flux was based solely on the exponential relationship between flux and soil temperature for each gas. This study revealed that the impact of variations in water table on monthly and yearly summed CO2 and CH4 fluxes differed markedly between the vegetation zones. By taking the temporal change in water table into account in the estimation of both the CO2 and CH4 fluxes, the monthly summed CO2 and CH4 fluxes in the Phragmites-zone were markedly greater in every month of the year compared to estimation based on temperature alone. In the Juncus-zone, the effect of water table on monthly summed CO2 and CH4 fluxes differed between months. In addition, the magnitude of water-table effects controlling monthly summed CO2 and CH4 fluxes differed with atmospheric conditions, i.e., between the pressure-falling and low-pressure phase on the one hand and other pressure phases on the other hand. After weighting all the impacts of temporal changes in water table on fluxes, the yearly summed CO2 and CH4 fluxes showed a 1.26–6.64-fold increase compared with not taking water table effects into account, and the increase differed among the three vegetation zones.  相似文献   

18.
华北平原农田生态系统碳过程与环境效应研究   总被引:1,自引:0,他引:1  
本文总结了25年来针对华北平原小麦-玉米两熟系统,农田的碳循环对气候变化(温度升高)和管理措施(氮肥施入、秸秆还田和耕作方式等)响应机制的研究成果。自2001年起我们在中国科学院栾城农业生态系统试验站建立了3个长期定位碳循环试验:耕作试验、有机循环试验和增温试验,并完善了4种农田碳过程监测方法体系:隔离罐-碱液吸收CO_2法、静态箱-气相色谱法、涡度相关技术和浓度梯度法。量化了华北平原小麦-玉米两熟系统碳输入-输出的平衡,并对华北平原施氮农田土壤碳截留进行了再评价,指出秸秆还田下高水高肥的精细管理农田正在以77 g(C)·m~(-2)·a~(-1)的速度丢失碳;此外长期氮施入虽然显著增加0~100 cm土体的土壤有机碳含量,但同时会造成0~60 cm土体土壤无机碳含量显著降低。我们在对碳过程环境效应的研究中进一步指出:增温和施氮均会降低CH4汇强度,但对土壤呼吸无显著影响,这可能主要是由于试验增温诱发的土壤干旱抵消了土壤温度的部分影响和土壤呼吸对土壤温度升高的适应性造成的。我们对剖面土壤气体的研究表明施氮对剖面CH4和CO_2均无显著影响。进一步将静态箱法和浓度梯度法相结合的研究结果表明0~40cm土层是北方旱地无氮农田土壤CO_2产生和CH4吸收的主要发生层。  相似文献   

19.
Abundant production of organic matter that decomposes slowly under anaerobic conditions can result in substantial accumulation of soil organic matter in wetlands. Tedious means for estimating production and decomposition of plant material, especially roots, hampers our understanding of organic matter dynamics in such systems. In this paper, I describe a study that amended typical estimates for both production and decomposition of organic matter by measuring net flux of carbon dioxide (CO2) over the peat surface within a conifer swamp, a sedge-dominated marsh, and a bog in the Appalachian Mountain region of West Virginia and western Maryland, USA. The sites are relatively productive, with net primary production (NPP) of 30 to 82.5 mol C m?2 yr?1, but peat deposits are shallow with an average depth of about 1 m. In summer, all three sites showed net CO2 flux from the atmosphere to the peat during the daytime (?20.0 to ?30.5 mmol m?2 d?1), supported by net photosynthesis, which was less than net CO2 flux from the peat into the atmosphere at nighttime (39.2 to 84.5 mmol m?2 d?1), supported by ecosystem respiration. The imbalance between these estimates suggests a net loss of carbon (C) from these ecosystems. The positive net CO2 flux seems to be so high because organic matter decomposition occurs throughout the peat deposit — and as a result concentrations of dissolved inorganic carbon (DIC) in peat pore waters reached 4,000 Μmol L?1 by late November, and concentrations of dissolved organic carbon (DOC) in peat pore waters reached 12,000 Μmol L?1. Comparing different approaches revealed several features of organic matter dynamics: (i) peat accretion in the top 30 cm of the peat deposit results in a C accumulation rate of about 15 mmol m?2 d?1; however, (ii) the entire peat deposit has a negative C balance losing about 20 mmol m?2 d?1.  相似文献   

20.
为了研究耕作措施对双序列轮作农田土壤温室气体的排放及影响, 采用CO2分析仪、静态箱 气相色谱法在陇中黄土高原半干旱区对传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作+秸秆还田4种耕作措施下豆麦双序列轮作农田土壤温室气体(CO2、N2O和CH4)的排放及影响因素进行了连续测定和分析。结果表明: 测定期内4种耕作措施下农田土壤均表现为CO2源、N2O源和CH4净吸收汇; 除传统耕作不覆盖措施, 其他3种耕作措施不同程度地减少了2种轮作序列土壤的N2O排放通量, 并显著增加了土壤对CH4的吸收。CO2和N2O的排放通量分别与地表、地下5 cm处、地下10 cm处的土壤温度呈极显著和显著正相关关系, 相关系数分别为0.92**和0.89**、0.95**和0.91**、0.77*和0.62*; 而CH4吸收通量与不同地层的温度之间无明显的相关关系; CO2和CH4的通量与0~5 cm、5~10 cm的土壤含水量均呈显著正相关关系, 相关系数分别为0.69*和0.72*、0.77*和0.64*, 而与10~30 cm土壤含水量无明显相关关系; N2O排放通量与各层次的土壤含水量之间均呈不显著负相关关系。对2种轮作序列各处理下土壤中排放的3种温室气体的增温潜势计算综合得出: 4种耕作措施中, 免耕不覆盖处理可相对减少土壤温室气体的排放量, 进而降低温室效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号