首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: The aim of this study was to examine whether there are associations between working conditions and the use of staff canteen or packed meals among Finnish employees. SETTING: Data were obtained from cross-sectional surveys on working conditions, conducted triennially (1997, 2000, 2003) since 1997. SUBJECTS: In each survey, the subjects were 25-64-year-old employed Finnish employees: 3096 men and 3273 women. RESULTS: Employees at large workplaces used canteens far more often than those at smaller workplaces. Working conditions played a different role in canteen use at small and large workplaces, as well as among the different sexes. At small workplaces, physically demanding jobs held by female employees and low job control encouraged employees to use the canteen. On the other hand, at large workplaces, low social support at work encouraged the use of canteens among men whereas high mental strain at work meant they used the canteen less. Among women, eating packed meals was not related to working conditions, but among men, low social support and high mental strain at work were associated with more frequent use of packed meals. CONCLUSIONS: The use of a staff canteen is largely determined by the size of the workplace and by employee education. The underlying factor could be the availability of canteens, a question which must be confirmed in further studies, since well-planned mass catering at workplaces has major effects on public health, well-being and the nutrition education of employees.  相似文献   

2.
Reducing decomposition and mineralization of organic matter by increasing groundwater levels is a common approach to reduce plant nutrient availability in many peat meadow restoration projects. The soil community is the main driver of these processes, but how community composition is affected by peat meadow restoration is largely unknown. Furthermore, it is unclear whether restoration induced changes could lead to altered decomposition and mineralization rates. We determined soil community composition in restored peat meadows with different groundwater levels and soil pH. This composition was subsequently used in food web model calculations of C and N mineralization rates to assess whether differences in soil community composition may have contributed to differences in decomposition and mineralization rates observed between these meadows.Community composition of micro-organisms, Collembola and Enchytraeidae differed considerably between meadows and were correlated with differences in groundwater levels and soil pH. Collembolan and enchytraeid species from wet and neutral environments were more abundant at meadows with higher groundwater levels. Lower fungal to bacterial PLFA ratios and higher numbers of protozoa indicated an increased importance of the bacterial part of the food web at meadows with higher groundwater levels. Food web model calculations suggested that the observed changes in community composition would lead to higher rates of C and N mineralization at meadows with high groundwater levels. Results from modeling were consistent with field measurements of C mineralization, but not with measurements of N mineralization.We conclude that understanding changes in soil community composition in response to specific restoration measures may help us to better understand ecosystem responses to wetland restoration schemes, especially regarding soil biogeochemical processes.  相似文献   

3.
Methane (CH4) production varies greatly among different types of peatlands along an ombrotrophic–minerotrophic hydrogeomorphic gradient. pH is thought to be a dominant control over observed differences in CH4 production across sites, and previous pH manipulation experiments have verified the inhibitory effect of low pH on CH4 production. In this experiment, we asked (i) if the major effect of low pH is direct inhibition of one or both pathways of methanogenesis and/or inhibition of ‘upstream’ fermentation that provides substrates for methanogens, and (ii) to what extent is pH sufficient to explain differences in CH4 production relative to other factors that co-vary across the gradient. To address these questions, we adjusted the pH of peat slurries from 6 peatlands to 4 levels (3.5, 4.5, 5.5, and 6.5) that reflected their range of native pH, maintained these pH levels over a 43-day anaerobic laboratory incubation, and measured a suite of responses within the anaerobic carbon cycle. Higher pH caused a significant increase in CO2 production in all sites. Regardless of site, time, and pH level, the reduction of inorganic electron acceptors contributed to <12% of total CO2 production. Higher pH caused acetate pooling by Day 7, but this effect was greater in the more ombrotrophic sites and lasted throughout the incubation, whereas acetate was almost completely consumed as a substrate for acetoclastic methanogenesis by Day 43 in the minerotrophic sites. Higher pH also enhanced CH4 production and this process was up to 436% more sensitive to changes in pH than CO2 production. However, across all sites and pH levels, CH4 production accounted for <25% of the total gaseous C production. Fermentation appeared to be the main pathway for anaerobic C mineralization. Our results indicate that low pH inhibits CH4 production through direct inhibition of both methanogenesis pathways and indirectly through its effects on fermentation, but the direct effects are stronger. The inability of acetoclastic methanogenesis to fully compensate for acetate pooling in ombrotrophic peats at higher pH suggests that CH4 production is inhibited by some factor(s) in addition to pH in these sites. We examine a variety of other potential inhibitory mechanisms and postulate that humic substances may provide an important inhibitory effect over CH4 production in ombrotrophic peatlands.  相似文献   

4.
5.
Natural variations in the stable isotope 15N are often exploited in studies of N cycling in ecosystems. Lower 15N natural abundance in non-legume plants growing in association with legumes, compared with the non-legume grown alone in pure stands have been observed in cropping, forage, and agroforestry systems. Such observations have frequently been attributed to the transfer of biologically-fixed nitrogen (N) from the legume to the companion non-legume, and various methodologies have been employed to calculate the extent of the N transfer. While some of these 15N natural abundance-based estimates of N transfer were within the range previously reported using equivalent 15N-enriched techniques (<20% of non-legume plant N and <10 kg N ha−1 derived from fixed N contributed by neighbouring legumes), many of the values obtained using natural abundance were much higher (30%–83% of the non-legume N derived from fixed N representing up to 30–40 kg N ha−1) than generally measured by 15N-enriched methods; with even greater estimates being determined where data were available to allow N transfer to be re-calculated on the basis of total legume N rather than fixed N (42% to >100%, and up to 110 kg N ha−1 per year). This review raises concerns about the assumptions behind the natural abundance approach, and provides some alternative interpretations for the observed differences in natural 15N abundance between plants grown in the presence and absence of legumes. It was concluded that simple comparative measures of non-legume δ15N alone cannot provide a quantitative estimate of N transfer between plant species if the dominant source and the isotopic identity of the transferred N cannot be validated, and if the extent of any isotopic fractionation associated with relevant N transformations occurring during transfer cannot be defined. To date this information is not forthcoming. There is a need to greatly improve our understanding of the transfer processes before the real value of the δ15N technology can be realized. In the first instance this will primarily be achieved by carefully executed experiments under controlled conditions, and in the field, employing both 15N natural abundance and enrichment approaches so estimates of transfer can be compared, and the data interrogated using modelling approaches to explore isotopic fractionation.  相似文献   

6.
7.
Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whether priming effects caused by Fremont cottonwood (Populus fremontii) and Ponderosa pine (Pinus ponderosa) grown in three different soil types increased plant available N. We measured primed C as the difference in soil-derived CO2-C fluxes between planted and non-planted treatments. We calculated “excess plant available N” as the difference in plant available N (estimated from changes in soil inorganic N and plant N pools at the start and end of the experiment) between planted and non-planted treatments. Gross N mineralization at day 105 was significantly greater in the presence of plants across all treatments, while microbial N measured at the same time was not affected by plant presence. Gross N mineralization was significantly positively correlated to the rate of priming. Species effects on plant available N were not consistent among soil types. Plant available N in one soil type increased in the P. fremontii treatment but not in the P. ponderosa treatment, whereas in the other two soils, the effects of the two plant species were reversed. There was no relationship between the cumulative amount of primed C and excess plant available N during the first 107 days of the experiment when inorganic N was still abundant in all planted soils. However, during the second half of the experiment (days 108-398) when soil inorganic N in the planted treatments was depleted by plant N uptake, the cumulative amount of primed C was significantly positively correlated to excess plant available N. Primed C explained 78% of the variability in plant available N for five of the six plant-soil combinations. Excess plant available N could not be predicted from cumulative amount of primed C in one species-soil type combination. Possibly, greater microbial N immobilization due to large inputs of rhizodeposits with low N concentration may have reduced plant available N or we may have underestimated plant available N in this treatment because of N loss through root exudation and death. We conclude that soil N availability cannot be determined by soil properties alone, but that is strongly influenced by root-soil interactions.  相似文献   

8.

Purpose

The aim of the study was to estimate how the deadwood of different tree species in various stages of decomposition affected nutrient dynamics.

Materials and methods

The deadwood of eight species (common alder, common aspen, common ash, silver fir, pedunculate oak, Norway spruce, common hornbeam and silver birch) was selected. Three logs from each species in the third, fourth and fifth decay classes were chosen for analysis. Wood in the third decay class was characterised by larger hard fragments, fragmented bark and no branches; in the fourth decay class, it was characterised by small pieces and a fragmented bark; and in the fifth decay class, it was characterised by a soft texture and no bark. The investigation was carried out in the Czarna Rózga Reserve in Central Poland. Tension lysimeters were installed under each log in the humus horizon. The water samples collected from tension lysimeters were chemically analysed in the laboratory. The water chemistry was analysed by means of ion chromatography using a DIONEX ICS 5000 unit.

Results and discussion

The leachate obtained from different tree species contained different ion concentrations. The high similarity of the concentration of total anions and statistically significant differences in the content of total cations were determined in the leachate from the wood of coniferous and deciduous species. The concentration of the cations increases with the advancement of the decomposition level. A general linear model analysis demonstrates that wood species and the decomposition classes are of equal importance in defining the ion composition of the filtrate leaching from deadwood.

Conclusions

Wood at the highest decomposition stage releases more ions to the surface soil layers than wood at the lower decay class. An exception from the rule is the wood of birch, which in the III decay class releases more ions than in its higher decay classes. When comparing the ionic composition of leachate released from wood of coniferous and deciduous tree species, the latter are characterised by higher cation concentrations in comparison with coniferous species. Among the deciduous species, wood of such species as ash, hornbeam, aspen, birch and alder has the most favourable effects on the soil surface horizons through its supply with ionic substances. The ash wood releases high amounts of calcium, hornbeam wood releases magnesium and sodium, and aspen releases calcium, potassium and nitrate anion. From the analysed coniferous species, fir wood has a more favourable effect in terms of ion release to soil than spruce wood.
  相似文献   

9.
Can root exudate components influence the availability of pyrene in soil?   总被引:1,自引:0,他引:1  

Purpose

Little information is currently available regarding the influence of different root exudate components (RECs) on the availability of persistent organic pollutants in the soil environment. In this study, we investigated the impacts of different RECs including organic acids, amino acids, and fructose on the availability of pyrene as a representative polycyclic aromatic hydrocarbon (PAH) in soils.

Materials and methods

Citric acid, oxalic acid, malic acid, serine, alanine, and fructose were used in the experiments as representative RECs. Pyrene-spiked soils (TypicPaleudalfs) with present RECs were incubated for 30 days, and the available fraction of pyrene was determined using n-butanol extraction procedure.

Results and discussion

The amount of n-butanol-extractable pyrene in soil increased with the addition of tested RECs and increased when REC concentrations are enhanced within the range of 0–21 g kg?1. The extractability of pyrene in soil with REC treatments and the enhancement ratio (r, %) of the extractable pyrene in soil by the addition of RECs after a 30-day incubation decreased in the following order: organic acids (oxalic acid ≥ citric acid > malic acid) > amino acid (alanine > serine) > fructose. This decrease was observed irrespective of soil sterilization, although the concentrations of extractable pyrene were lower in non-sterilized soils compared to sterilized soils. The concentrations of metal cations and dissolved organic matter (DOM) in solution increased when organic acids were added.

Conclusions

The tested RECs at concentrations of 0–21 g kg?1 clearly enhanced the availability of pyrene in soils, and larger amounts of RECs resulted in higher pyrene availabilities in the tested soils. Microbial biodegradation diminished the amount of available pyrene irrespective of the presence of RECs. The mechanism of REC-influenced availability of pyrene in soil may be related to the metal dissolution and release of DOM from soil solids. The results of this study will be useful in assessing PAH-related risks to human health and the environment and will be instructive in food safety and remediation strategies at contaminated sites.  相似文献   

10.
Habitat loss and fragmentation are global conservation concerns, but animal species do not respond to these threats in the same manner. At the Biological Dynamics of Forest Fragments Project (BDFFP), located 80 km north of Manaus, Amazonas, Brazil, the distribution and persistence of six native primate species differ among fragments that were isolated in 1980s. We identified both landscape and species characteristics predicting the presence of primates in these forest fragments. Fragment size positively and distance to nearest forested area negatively predicted primate species richness in the fragments; however, these relationships were not straightforward because these two variables were correlated. The proportion of fruit in a species’ diet was the most important factor predicting its presence in the forest fragments, with species relying primarily on frugivory faring poorly. Home range size was the second-best predictor of a species’ presence; however, some species with large home ranges were present in the 10-ha forest fragments. The extent to which the individual primate species traveled in and out of the fragments varied, suggesting that further research is necessary to determine the primary factors that lead to the animals’ use of the matrix. We conclude that in addition to conserving large tracts of habitat, reducing the isolation of the forest fragments through the creation of forest corridors and through the presence of additional forest fragments within the agricultural matrix may increase animal movement across the landscape. Such changes to the matrix may be critical for those species that do not readily traverse non-forested areas.  相似文献   

11.
《Applied soil ecology》2009,41(3):529-535
The repeated introduction of an organic resource to soil can result in its enhanced degradation. This phenomenon is of primary importance in agroecosystems, where the dynamics of repeated nutrient, pesticide, and herbicide amendment must be understood to achieve optimal yield. Although not yet investigated, the repeated introduction of cadaveric material is an important area of research in forensic science and cemetery planning. It is not currently understood what effects the repeated burial of cadaveric material has on cadaver decomposition or soil processes such as carbon mineralization. To address this gap in knowledge, we conducted a laboratory experiment using ovine (Ovis aries) skeletal muscle tissue (striated muscle used for locomotion) and three contrasting soils (brown earth, rendzina, podsol) from Great Britain. This experiment comprised two stages. In Stage I skeletal muscle tissue (150 g as 1.5 g cubes) was buried in sieved (4.6 mm) soil (10 kg dry weight) calibrated to 60% water holding capacity and allowed to decompose in the dark for 70 days at 22 °C. Control samples comprised soil without skeletal muscle tissue. In Stage II, soils were weighed (100 g dry weight at 60% WHC) into 1285 ml incubation microcosms. Half of the soils were designated for a second tissue amendment, which comprised the burial (2.5 cm) of 1.5 g cube of skeletal muscle tissue. The remaining half of the samples did not receive tissue. Thus, four treatments were used in each soil, reflecting all possible combinations of tissue burial (+) and control (−). Subsequent measures of tissue mass loss, carbon dioxide-carbon evolution, soil microbial biomass carbon, metabolic quotient and soil pH show that repeated burial of skeletal muscle tissue was associated with a significantly greater rate of decomposition in all soils. However, soil microbial biomass following repeated burial was either not significantly different (brown earth, podsol) or significantly less (rendzina) than new gravesoil. Based on these results, we conclude that enhanced decomposition of skeletal muscle tissue was most likely due to the proliferation of zymogenous soil microbes able to better use cadaveric material re-introduced to the soil.  相似文献   

12.
Positive effects of pyrochar on soil nutrient availability and plant growth are widely reported in literature. However, few studies have reported effects of hydrochars on plant nutrition. A pot trial was conducted over a period of 2 years to investigate the effect of a pyrochar (AGT) and a hydrochar (HTC) on poplar (Populus × generosa , clone AF8) growth, biomass allocation and nitrogen (N) uptake with special emphasis on the quantification (using an isotopic mass balance approach) of char‐derived nitrogen (CDN) absorbed by plants. We found that both pyrochar and hydrochar positively affected above‐ground biomass productivity in the first year, and biomass and nitrogen (N) allocation over the 2 years by reducing the allocation of resources to fine roots. By the end of the experiment, even though the total N uptake was not affected by char, the CDN was more than 24% of the total N absorbed by HTC‐treated plants compared to a negligible amount absorbed by AGT‐treated ones. Finally, char did not affect nitrogen use efficiency (NUE) in the first year of growth, but by the end of the experiment, NUE was higher in the above‐ground biomass of HTC‐treated than in AGT‐ and control poplars.  相似文献   

13.

Purpose

The concept of irrigating crops with saline irrigation water is not new, but impacts of this practice on soil properties remain debatable, particularly the use of highly saline water. In this work, key soil chemical properties were assessed to a depth of 300 cm following 2.5 years of application of highly saline irrigation to a sodic texture-contrast soil (Brown Sodosol) in south-eastern Tasmania, Australia.

Materials and methods

Control plots (rainfall only) were compared to irrigation treatments of low (0.8 dS/m) and high salinity (16 dS/m) waters at application rates of both 200 and 800 mm/year.

Results and discussion

Whilst significant increases in both electrical conductivity and chloride concentration occurred throughout the soil profile in the high salinity treatment, these values were well below those of the irrigation water, indicating effective deep leaching. In the upper soil profile, 0–50 cm, of the high salinity treatments both the exchangeable Na+ and its ratio to total base cations (ESP) were significantly increased whilst the lower soil profile between 50 and 200 cm, was improved via both reduced alkalinity and sodicity. Leaching of the exchangeable base cations Ca2+, Mg2+ and K+ was significant in the upper soil profile (0–50 cm). As expected, the low salinity treatment (0.8 dS/m) had minimal impacts on soil chemical properties. The upper topsoil (0–10 cm) total organic carbon was significantly reduced in the high salinity plots and was negatively correlated with Cl? concentration.

Conclusions

The data confirms the general concerns about application of saline irrigation, namely increased whole profile salinisation and upper soil profile (0–50 cm) sodicity, but they also show unexpected and desirable reductions in the lower soil profile (>?50 cm) alkalinity and sodicity. It appears the Na+ ions present in the saline waters led to differential leaching of base cations from the rooting zone, especially Ca2+ which then ameliorate the alkalinity and sodicity deeper in the soil profile (>?50 cm). Thus, surface application of gypsum may help sustain the application of highly saline waters; alternatively, subsurface irrigation above the sodic clayey subsoils could be trailed.
  相似文献   

14.
Soil fertility depletion is a major constraint to agricultural production for smallholder farming households in many sub‐Saharan countries, and it is worsened by climate variability. In order to sustain food security for a growing population, measures have to be taken against C and nutrient losses from soils. This study examines whether banana–coffee agroforestry systems can improve soil fertility and C pools in smallholder farms in E Africa amidst observed climate variability. We selected 20 farms in Central Uganda, where soil samples were obtained from the top and subsoil layers. Samples were analyzed for several soil fertility parameters including soil organic matter (SOM), total soil organic C, pH, total N, plant‐available P, exchangeable K, texture, and bulk density. Soil C stocks were calculated based on soil organic C concentrations and bulky density. We measured tree diameter and height and calculated aboveground plant biomass using allometric equations. Belowground biomass was estimated using equations based on the respective aboveground plant biomass. Our results show that banana–coffee agroforestry farming systems had significantly higher total SOM and total N compared to the banana monoculture. Similar trends were observed for soil C stocks and total C pools. The former contained 1.5 times higher soil C stocks than the latter. Likewise, the mean total C pools for the banana–coffee agroforestry farm plots were 26% larger than that under banana monoculture. However, exchangeable K was higher in the soil of banana monocultures. Plant‐available P levels were limiting under both farming systems. The study demonstrates that beyond socio‐economic benefits banana–coffee agroforestry farming systems have beneficial effects on soil fertility and C sequestration compared to banana monocultures in the study area. However, precautions to avoid P depletion have to be taken under current climate conditions.  相似文献   

15.
Estimating future fluxes of CH4 between land and atmosphere requires well-conceived process-based biogeochemical models. Current models do not represent the anaerobic oxidation of methane (AOM) in land surface soils, in spite of increasing evidence that this process is widespread. Our objective was to determine whether AOM, or potential AOM, commonly occurs in 20 hydromorphic soils spanning a wide range of chemical properties. Bulk soil samples were collected under shallow water near the shoreline of 15 recently drained fish ponds in southern Bohemia (Czech Republic), as well as from below the water table at 3 peatland locations in northeast Scotland and 2 acid sulfate soils on the southern coast of Finland. Each soil slurry was incubated under both oxic and anoxic conditions, with or without the addition of alternative electron acceptors (SO42− and NO3) or H2PO4. Here, “oxic” and “anoxic” conditions refer to anoxic soil respectively incubated in a headspace containing air or argon. Using the isotope dilution method, we determined the gross production and oxidation rates of CH4 after 2 days incubation under oxic headspace conditions, and after 2, 21 and 60 days incubation under anoxic conditions. Large differences in net CH4 fluxes were observed between soil types and between incubation conditions. AOM was detected in each of the 20 bulk soil samples, which spanned >6 pH units and 2 orders of magnitude in organic C content. Significant positive relationships were found between AOM and gross CH4 production rates under anoxic conditions, resulting in AOM rates that were sometimes higher than CH4 oxidation rates under oxic headspace conditions. There was no relationship between net and gross CH4 production rates, such that 2 soil types could display similar low net rates, yet conceal very large differences in gross rates. The effects of alternative electron acceptors on AOM were idiosyncratic and resulted in no net trend. We did find, however, a negative effect of SO42− and H2PO4 on gross CH4 production rates under anoxic and oxic conditions respectively. Under oxic headspace conditions, CH4 oxidation was related to soil organic C content. Taken collectively, our results suggest that AOM, or potential AOM, is prevalent over a wide range of soil types, that AOM may contribute substantially to CH4 oxidation in soils, and that AOM in soils should be integrated to current process-based CH4 cycling models.  相似文献   

16.
Ammonia-oxidizing archaea (AOA) and bacteria (AOB), which convert NH3 to NO2? in soils, are important for agricultural production. It is well known that N addition can strongly affect soil ammonia oxidizers, but little is known about P addition. Based on microcosm experiments, this study assessed the responses of ammonia oxidizers to chemical P addition in a typically high P agricultural soil with or without N supply. Six treatments examined were neither N nor P, P alone (0.15, 0.45, and 0.75 g P2O5 kg?1 soil, respectively), N alone (0.25 g N kg?1 soil), and N plus P (0.25 g N and 0.15 g P2O5 kg?1 soil). Quantitative real-time PCR for the abundance and high-throughput sequencing for community structure were applied. The results revealed that P addition did not affect the abundances and community structures of AOA and AOB, but N addition significantly increased AOB abundance and alter its community structure. Without N supply, continuously increasing soil P availability did not affect these two groups of ammonia oxidizers. This study highlights the relationship between soil P availability and ammonia oxidizers and suggests that soil P availability could be as a potential indicator for predicting N-related ecosystem functions in agricultural production.  相似文献   

17.
Microsatellites are one of the preferred marker types to estimate the level of genetic diversity and subdivision in natural populations of endangered species. Many studies thereby attempted to identify genetically defined management units for conservation by applying a variety of genetic clustering methods. It is not clear, however, whether genetic clusters inferred from neutral molecular markers reflect differences in fitness or adaptation. In this study, I conducted a common garden experiment on the endangered European tree frog (Hyla arborea) to clarify whether fitness-related traits of larval development differed between three genetic groups defined by Bayesian clustering analysis. I reared larvae under semi-natural conditions and measured growth and developmental rates as well as survival at five larval stages from eclosion to completion of metamorphosis. Nested general and generalized linear models showed significant cluster differences for several variables in terms of smaller growth rates and body sizes at early larval stages. These differences were, however, probably not linked to adaptive divergence among clusters but rather to neutral genetic processes in the breeding sites of one cluster, which were spatially isolated and subject of recent bottlenecks. Hence, a genetic load effect (e.g. inbreeding depression) may have acted on the populations of this particular cluster. I advise studies aiming to define management units for conservation to not only use genetic clustering methods but to complement their findings with experimental approaches on fitness-related traits.  相似文献   

18.
Nitrogen (N) limits plant growth in many forest ecosystems. The largest N pool in the plant-soil system is typically organic, contained primarily within the living plants and in the humus and litter layers of the soil. Understanding the pathways by which plants obtain N is a priority for clarifying N cycling processes in forest ecosystems. In this review, the interactions between saprotrophic microorganisms and ectomycorrhizal fungi in N nutrition with a focus on the ability of ectomycorrhizal fungi to circumvent N mineralization for the nutrition of plants in forest ecosystems will be discussed. Traditionally, it is believed that in order for plants to fulfill their N requirements, they primarily utilize ammonium (NH4+) and nitrate (NO3). In temperate forest ecosystems, many woody plants form ectomycorrhizas which significantly improves phosphorus (P) and N acquisition by plants. Under laboratory conditions, ectomycorrhizal fungi have also been proven to be able to obtain N from organic sources such as protein. It was thus proposed that ectomycorrhizal fungi potentially circumvent the standard N cycle involving N mineralization by saprotrophic microorganisms. However, in many forest ecosystems the majority of the proteins in the forest floor form complexes with polyphenols. Direct access of N by ectomycorrhizal fungi from a polyphenol-protein complex may be limited. Ectomycorrhizal fungi may depend on saprotrophic microorganisms to liberate organic N sources from polyphenol complexes. Thus, interactions between saprotrophic microorganisms and ectomycorrhizal fungi are likely to be essential in the cycling of N within temperate forest ecosystems.  相似文献   

19.
Sustainability of the local shifting cultivation practice in the mountainous region of Northern Laos was investigated. Due to low fertility of the soils derived from shale and its strongly weathered and acidic nature in the eastern side of the Nam Khan River watershed, shortening of the fallow period to produce enough amount of upland rice for the local population would not be sustainable any more. On the other hand, the eroded materials from limestone range were added to the soils in the western side of watershed which made the soil more fertile. Based on the calculated population capacity by Carneiro's equation, a system with 2- or 3-year fallow for 1-year cultivation can be the maximum to afford the current population. To make the shifting cultivation system more sustainable, introduction of fallow system with a tree species, paper mulberry (Broussonetia papyrifera) could be a good option to be proposed.  相似文献   

20.
In this study, whether the nutritional status of apple trees can be predicted in the early stages of vegetation was determined by leaf analysis. For this purpose, from different districts of Isparta province in Turkey where apples are cultivated extensively, 150 apple orchards were assessed according to the production potential of districts. The leaf samples were collected at six different stages of vegetation from these orchards, and nitrogen, phosphorus, potassium calcium, magnesium, iron, copper, zinc, manganese, and boron (N, P, K, Ca, Mg, Fe, Cu, Zn, Mn and B) amounts were determined. Correlations were examined between the sixth period and the previous periods. The presence of significant correlations was interpreted, as leaf analysis can be used to determine the nutritional status of apples in the early growth period. Consequently, it was determined that leaf analysis can be carried out at any time from the beginning of vegetation for all elements except Fe and Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号