首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native North American prairie grasslands are renowned for the richness of their soils, having excellent soil structure and very high organic content and microbial biomass. In this study, surface soils from three prairie restorations of varying ages and plant community compositions were compared with a nearby undisturbed native prairie remnant and a cropped agricultural field in terms of soil physical, chemical and microbial properties. Soil moisture, organic matter, total carbon, total nitrogen, total sulfur, C:N, water-holding capacity and microbial biomass (total PLFA) were significantly greater (p<0.05) in the virgin prairie remnant as well as the two long-term (21 and 24 year) prairie restorations, compared with the agricultural field and the restoration that was begun more recently (7 years prior to sampling). Soil bulk density was significantly greater (p<0.05) in the agricultural and recently restored sites. In most cases, the soil quality indicators and microbial community structures in the restoration sites were intermediate between those of the virgin prairie and the agricultural sites. Levels of poly-β-hydroxybutyrate (PHB) and PLFA indicators of nutritional stress were significantly greater (p<0.05) in the agricultural and recent restoration sites than in the long-term restorations or the native prairie. Samples could be assigned to the correct site by discriminant analysis of the PLFA data, with the exception that the two long-term restoration sites overlapped. Redundancy analysis showed that prairie age (p<0.005) was the most important environmental factor in determining the PLFA microbial community composition, with C:N (p<0.015) also being significant. These findings demonstrate that prairie restorations can lead to improved quality of surface soils. We predict that the conversion of farmland into prairie will shift the soil quality, microbial community biomass and microbial community composition in the direction of native prairies, but with the restoration methods tested it may take many decades to approach the levels found in a virgin prairie throughout the soil profile.  相似文献   

2.
Parallel incubation at different temperatures combined with 13CO2 efflux has been used to distinguish the temperature sensitivity of labile soil carbon (young soil carbon derived from newly-introduced vegetation) from that of resistant soil carbon (old, native vegetation-derived soil carbon). But we believe that this approach to assessing relative temperature sensitivities is confounded by differential rates of depletion of labile and resistant soil carbon at different temperatures. Here we employ a simple decomposition model to demonstrate potential pitfalls in interpreting 13CO2 efflux data that inevitably, and potentially erroneously, lead to the conclusion that decomposition of resistant soil carbon pools is more temperature sensitive than labile pools. We conclude by offering a new approach for interpreting these data that eliminates this potential bias.  相似文献   

3.
Soil organic carbon (SOC) dynamics are affected by tillage, soil erosion and depositional processes. The objectives of this paper are to evaluate soil organic carbon and fly-ash distribution methods for identifying eroded phases of soils in Illinois and Russia and quantifying the extent of soil loss from erosion. The effect of accelerated erosion on soils is recorded on National Cooperative Soil Survey maps as phases of soil series that reflect the percentage of the original A horizon materials remaining. Identification depends on knowledge of the original A horizon thicknesses, SOC and fly-ash contents at uncultivated and uneroded sites when determining erosion phases of soil at cultivated and eroded sites. However, locating uncultivated and uneroded comparison sites with similar landscape and slope characteristics can be difficult. The amount of A horizon materials within the plow layers (Ap horizons) or topsoils are often determined by soil colors which reflect the SOC contents. Soil erosion phases based on original A horizon materials remaining in the topsoils may underestimate the extent of soil losses from topsoils and subsoils, particularly where soils have been cultivated for hundreds of years and are severely eroded. The SOC contents and soil erosion phases can be affected by losses or gains of organic C-rich sediments from tillage translocation and erosion, by management input level differences, oxidation, or as a result of land use and landscape position variations. Fly-ash was found to be more stable and act as a better indicator of soil erosion phase than SOC content.  相似文献   

4.
Temperature profoundly affects saprotrophic respiration rates, and carbon quality theory predicts that the rates' temperature sensitivity should increase as the quality of the carbon source declines. However, reported relationships between saprotrophic respiration responses to temperature and carbon quality vary widely. Some of this variability may arise from confounding effects related to both substrate quality and substrate availability. The importance of these variables, as well as substrate diffusion and uptake rates, for the temperature sensitivity of saprotrophic respiration has been validated theoretically, but not empirically demonstrated. Thus, we tested effects of varying substrate uptake rates on the temperature sensitivity of organic carbon degradation.For this purpose we created a model system using the organic layer (O-horizon), of a boreal forest soil, specifically to test effects of varying monomer uptake and release rates. The addition of both monomers and polymers generally increased the temperature sensitivity of saprotrophic respiration. In response to added monomers, there was a linear increase in the temperature sensitivity of both substrate-induced respiration and the specific growth rate with increasing rate of substrate uptake as indicated by the CO2 production at 14 °C. Both of these responses diverge from those predicted by the carbon quality theory, but they provide the first empirical evidence consistent with model predictions demonstrating increased temperature sensitivity with increased uptake rate of carbon monomers over the cell membrane. These results may explain why organic material of higher carbon quality induces higher temperature responses than lower carbon quality compounds, without contradicting carbon quality theory.  相似文献   

5.
Traditional models of soil organic matter decomposition predict that soil carbon pools with high chemical stability and large physical structure are more resistant against degradation than chemically labile and fine-grained material. We investigated whether soil fauna, by its direct and indirect effects on carbon turnover, would reinforce or counteract this general trend.The effects of four major faunal groups on carbon pools of differing recalcitrance were studied in an extensive microcosm experiment. Ninty-six microcosms were inoculated with nematodes, enchytraeids, collembola, and lumbricids in three densities, including combinations of groups. Bare agricultural soil and soil covered with maize litter were used as substrates. The microcosms were kept under constant conditions at 12 °C and 50% water holding capacity for 60 days. At the end of the experiment, soil particles were separated into size classes (<63 μm, 63-250 μm, >250 μm) and carbon pools were separated into solubility fractions (K2SO4-soluble, pyrophosphate-soluble, insoluble), by means of ultrasonic dispersion and subsequent stepwise solubilisation.Both in bare soil and in soil with litter, the carbon pools with the highest chemical stability (insoluble) and the larger particle sizes (>63 μm) were degraded more intensively than all other pools in the presence of lumbricids. The pools of intermediate chemical stability (pyrophosphate-soluble) underwent simultaneous degradation and neoformation brought about by different animal groups. The chemically most labile pool (K2SO4-soluble) remained largely unaffected by the fauna. Fixation of carbon in microbial biomass was increased by nematodes in bare soil and by enchytraeids in soil with litter. The results illustrate in detail how, under the influence of soil fauna, soil carbon pools are decomposed in a cascade-like process where carbon is transferred from the stable to the more labile pools, while simultaneously a proportion is fixed in microbial biomass and another part is lost as CO2. Thereby, the relationship between a substrate's persistence and its chemical stability and physical size is substantially modified. We summarize the mechanisms that most likely are responsible for the different effects of the investigated faunal groups.  相似文献   

6.
Summary The hypotheses that disruption of soil structure increases mineralization rates in loams and clays more than in sandy soils and that this increase can be used to estimate the fraction of physically protected organic matter were tested. C and N mineralization was measured in undisturbed, and in finely and coarsely sieved moist or dried/remoistened soil. Fine sieving caused a temporary increase in mineralization. The relative increase in mineralization was much larger in loams and clays than in sandy soils and much larger for N than for C. The combination of remoistening and sieving of the soil gave a further increase in the mineralization flush after the disturbance. Again, the extra flush was larger in loams and clays than in sandy soils, and larger for N than for C. In loams and clays, small pores constituted a higher percentage of the total pore space than in sandy soils. The fraction of small pores explained more than 50% of the variation in the N mineralization rate between soils. There was also a good correlation between the small-pore fraction and the relative increase in N mineralization with fine sieving. For C, these relations were not clear. It is suggested that a large part of the organic matter that was present in the small pores could not be reached by microorganisms, and was therefore physically protected against decomposition. Fine sieving exposed part of this fraction to decomposition. This physically protected organic matter had a lower C: N ratio than the rest of the soil organic matter. The increase in N mineralization after fine sieving can be regarded as a measure of physically protected organic matter.  相似文献   

7.
According to the economy theory, plants should preferentially allocate photosynthate to acquire below-ground resources under elevated atmospheric carbon dioxide (eCO2) but decrease below-ground C allocation when nitrogen (N) is sufficient for plant growth. Arbuscular mycorrhizae (AM) represent a critical mechanism of below-ground nutrient acquisition for plants. The dynamics of arbuscular mycorrhizal fungi (AMF) could therefore reflect the response of plant C allocation under eCO2 and N addition. We examined the responses of glomalin-related soil protein (GRSP) to eCO2 (approximately 700 μmol mol−1 CO2) and/or N addition (100 kg N ha−1 yr−1 as NH4NO3) in a modeled subtropical forest to better understand its potential influence on soil C storage. We hypothesized that GRSP would increase under eCO2 and decrease under N addition. Furthermore, the positive effects of eCO2 on GRSP would be offset by extra N addition, and GRSP would remain unchanged under combined eCO2 and N addition. Our results showed that the mean concentrations of easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP) were 0.35 ± 0.05 and 0.72 ± 0.13 mg C cm−3, respectively, which accounted for 2.76 ± 0.53% and 5.67 ± 0.92% of soil organic carbon (SOC) in the 0–10 cm soil layer. Elevated CO2 significantly increased T-GRSP by 35.02% but decreased EE-GRSP by 5.09% in the top 10 cm soil layer. The opposite responses of T-GRSP and EE-GRSP to eCO2 might result from an unchanged photosynthate investment to AMF with possible changes in their decomposition rates. The effect of N on GRSP was contrary to our hypothesis, i.e., there was a 1.72%–48.49% increase in T-GRSP and a slightly increase in EE-GRSP. Both EE-GRSP and T-GRSP concentrations increased under the combination of eCO2 and N addition, which was inconsistent with our hypothesis. The significant increase of EE-GRSP under the combination of eCO2 and N addition was partly caused by more rapid plant growth and reduced microbial diversity, and the marginal increase of T-GRSP indicated that the interaction between eCO2 and N addition offset their independent effects. In addition, the relatively higher accumulation ratios of GRSP (22.6 ± 13.6%) compared with SOC (15.9 ± 9.4%) indicated that more rapid GRSP deposition in the soil might accelerate SOC accumulation under eCO2 and N addition. Our results will improve the understanding of the functioning of GRSP in soil C sequestration under global environmental change scenarios.  相似文献   

8.
Many factors including management history, soil type, climate, and soil landscape processes affect the dynamics of soil organic carbon (SOC). The primary objective of this research was to determine the effects of no-tillage and tillage systems on the SOC content after 12 years of controlled treatments. A tillage experiment with three treatments (no-till (NT), chisel plow (CP) and moldboard plow (MP)) was initiated in the spring of 1989 in southern Illinois. The plot area was previously in a tall fescue hayland for 15 years and had a 6% slope. Maize (Zea mays L.) and soybean (Glycine max L. Merr.) were grown in the plot area on a yearly rotation system starting with maize. Periodically, the SOC content of various soil layers, to a depth of either 30 or 75 cm, was measured and expressed on both a gravimetric and volumetric basis. After 12 years, the 0–15 cm surface soil layer of MP was significantly lower in SOC than the NT and CP plots. For all but 2 values, the significance of findings did not change with the form of expression (gravimetric versus volumetric). The surface layer (0–15 cm), subsoil (15–75 cm), and rooting zone (0–75 cm) of all treatments had reduction in SOC on a volumetric basis when compared to the pre-treatment values for sod. At the end of the 12-year study, the MP system had significantly less SOC in the surface layer, subsurface layer and rooting zone than the NT system at comparable depths. After 12 years of tillage under a maize–soybean rotation, the NT treatment sequestered or maintained more SOC stock (47.0 Mt ha−1) than the CP (43.7 Mt ha−1) and MP (37.7 Mt ha−1) treatments. The annual rate of SOC stock build up in the root zone (0–75 cm), above the MP system base, was 0.71 Mt ha−1 year−1 for the NT system and 0.46 Mt ha−1 year−1 for the CP system. For land coming out of the Conservation Reserve Program and returning to row crop production, NT and CP systems would maintain more SOC stock than MP system and reduce CO2 emissions to the atmosphere.  相似文献   

9.
We examined relationships between soil moisture and the temperature sensitivity of decomposition of labile soil organic carbon at a central North American grassland. For soils collected from shallow, xeric uplands, temperature sensitivity was greatest at intermediate soil moisture. For soils collected from the deeper, mesic lowlands, temperature sensitivity increased with increasing soil moisture. For example, lowland soils incubated at 75% WHC exhibited an apparent activation energy (Ea) that was 15 kJ mol−1 greater than soils incubated at 30% WHC, the equivalent of a Q10 of 2.8 vs. 2.3. Although further research is still needed to understand why moisture-temperature sensitivity relationships would differ between topographic positions, the magnitude of the soil moisture effect is large enough to alter soil C budgets and should be considered explicitly when predicting ecosystem responses to global change scenarios.  相似文献   

10.
王洪雨  于寒青 《土壤通报》2023,38(6):1470-1483
  目的  土壤侵蚀引起的土壤有机碳动态变化对可持续土地利用与管理以及陆地碳收支具有重要意义,为了解该领域的前沿及发展方向,采用文献计量学方法探究近30年来土壤侵蚀与土壤有机碳动态研究进展及热点。  方法  本文基于Web of Science核心数据库和中国知网(CNKI)中文核心期刊数据库,采用CiteSpace软件和文献计量学方法,分析了国内外近30年土壤侵蚀与土壤有机碳动态研究的发展历程、研究热点和趋势。  结果  研究表明欧美国家在该领域的研究发展较早,尤其是美国无论是国际影响力还是国际合作紧密性均处于领先地位,我国虽起步较晚但处于稳步快速发展态势;国际上该领域的研究在1995 ~ 2004年间主要围绕耕作方式和农艺措施对土壤侵蚀与土壤有机碳动态的影响,进而发展为侵蚀条件下土壤微生物及其群落对土壤有机碳的影响;近十年逐渐向基于稳定性同位素技术的土壤侵蚀与土壤有机碳动态定量研究转变,同时土壤侵蚀导致的碳氮流失所造成的面源污染及侵蚀碳在全球碳循环中的作用也是近年来的研究热点。国内于1995 ~ 2004年在本领域的研究主要集中土壤侵蚀所造成的有机碳和养分流失的研究,而后逐渐发展为结合“3S”技术和土壤侵蚀模型,研究人类活动、土地利用及气候变化等因素对土壤侵蚀与土壤有机碳动态的影响。近五年结合核素示踪、光谱等技术,在国家政策引导下该领域逐步发展为从生态综合治理向生态文明建设为核心的问题导向研究。  结论  通过分析对比国内外土壤侵蚀与土壤有机碳动态研究的热点和前沿,提出我国在该领域今后研究的展望。  相似文献   

11.
Most soil surveys are based on soil geomorphic, physical and chemical properties, while many classifications are based on morphological properties in soil profile. Typically, microbial properties of the soil (e.g. biomass and functional diversity) or soil biological quality indicators (SBQIs) are not directly considered in soil taxonomic keys, yet soil classification schemes are often used to infer soil biological function relating to policy (e.g. soil pollution attenuation, climate change mitigation). To critically address this, our aim was to assess whether rates of carbon turnover in a diverse range of UK soils (n > 500) could effectively be described and sub-divided according to broadly defined soil groups by conventional soil classification schemes. Carbon turnover in each soil over a 90 d period was assessed by monitoring the mineralisation of either a labile (14C-labelled artificial root exudates) or more recalcitrant C source (14C-labelled plant leaves) in soil held at field capacity at 10 °C. A double exponential first order kinetic model was then fitted to the mineralisation profile for each individual substrate and soil. ANOVA of the modelled rate constants and pool sizes revealed significant differences between soil groups; however, these differences were small regardless of substrate type. Principle component and cluster analysis further separated some soil groups; however, the definition of the class limits remained ambiguous. Exclusive reference values for each soil group could not be established since the model parameter ranges greatly overlapped. We conclude that conventional soil classification provides a poor predictor of C residence time in soil, at least over short time periods. We ascribe this lack of observed difference to the high degree of microbial functional redundancy in soil, the strong influence of environmental factors and the uncertainties inherent in the use of short term biological assays to represent pedogenic processes which have taken ca. 10,000 y to become manifest.  相似文献   

12.
黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究   总被引:5,自引:0,他引:5  
以黄土高原延河流域森林区3种典型植物群落为研究对象,研究了3种植物群落土壤团聚体中有机碳的含量、组分及土壤酶活性,分析了有机碳与酶活性的关系。结果表明:(1)3种植物群落,土壤团聚体各种形态有机碳和酶活性均表现为0~10 cm土层含量高于10~20 cm土层,辽东栎群落0~10 cm土层土壤多酚氧化酶活性却低于10~20 cm土层。(2)土壤团聚体有机碳含量在植物群落间表现为:辽东栎群落人工刺槐群落狼牙刺群落,酶活性在植被群落间的高低表现则不一致。土壤有机碳含量和酶活性在团聚体间均表现为随团聚体粒级的增大而增大,或先增大再减小的趋势。(3)蔗糖酶、纤维素酶以及β-D葡糖苷酶活性与各种形态有机碳均呈显著的正相关关系,多酚氧化酶和过氧化物酶与有机碳含量相关性不显著。(4)辽东栎群落和狼牙刺群落土壤团聚体蔗糖酶、纤维素酶、以及β-D葡糖苷酶活性在团聚体中表现为:|0.25 mm团聚体||2~0.25 mm团聚体||5~2 mm团聚体||5 mm团聚体|,其多酚氧化酶和过氧化物酶以及人工刺槐群落各种土壤酶活性均表现为2~0.25 mm粒级团聚体中最大。(5)β-D葡糖苷酶活性增大,能促进土壤各种有机碳含量增加;土壤蔗糖酶活性和β-D葡糖苷酶活性的提高有助于土壤活性有机碳含量增加;土壤多酚氧化酶活性的增大,有利于土壤腐殖质碳的积累。  相似文献   

13.
Afforestation of grassland has been globally identified as being an important means for creating a sink for atmospheric carbon (C). However, the impact of afforestation on soil C is still poorly understood, due to the paucity of well designed long-term experiments and the lack of investigation into the response of different soil C fractions to afforestation. In addition, little is known about the origins of soil C and soil organic matter (SOM) stability after afforestation. In a retrospective study, we measured C mass in the soil light and heavy fractions in the first 10 years after afforestation of grassland with Eucalyptus nitens, Pinus radiata and Cupressus macrocarpa. The results suggest that C mass in the soil heavy fraction remained stable, but the C mass in the light fraction decreased at year 5 under three species. Soil δ13C analysis showed that the decrease in the light fraction may be due to reduced C inputs from grassland species litter and low inputs from the still young trees. After the initial reduction, the recovery of soil C in the light fraction depended on tree species. At year 10, an increase of 33% in light fraction soil C was observed at the 0-30 cm depth under E. nitens, compared to that under the original grassland (year 0). Planting P. radiata restored light fraction soil C to the original level under grassland, whereas planting C. macrocarpa led to a decrease of 33%. We concluded that the increase of light fraction soil C between year 5 and 10 is most likely due to C input from tree residues. Most of the increased C was derived from root turnover under pine and from both root and leaf turnover under E. nitens, as indicated by plant C biomarkers such as lignin-derived phenols and suberin and cutin-derived compounds in the 0-5 cm soil layer. Modelling of soil ?14C‰ suggested that SOM had a greater mean residence time at year 10 than year 0 and 5 due to increased relative abundance of recalcitrant plant biopolymers.  相似文献   

14.
Soil texture can be an important control on soil organic carbon (SOC) retention and dynamics. The (clay + silt)-sized SOC pool (SOC < 20 μm) in non-cultivated or grassland soils has been proposed to reach an equilibrium or maximum level named protective capacity. Proper knowledge of SOC in this size fraction in non-cultivated and cultivated Black soils is important to evaluate management-induced changes in SOC in NE China. Twenty-seven paired soil samples (non-cultivated vs. cultivated) were collected in the Black soil zone in Heilongjiang and Jilin provinces. Bulk soil was dispersed in water with an ultrasonic probe and then soil size fractions were collected using the pipette technique for SOC analyses. Soil organic carbon in bulk soil and size fractions was measured by dry combustion. Average content of SOC < 20 μm was 23.2 g C kg−1 at the 0–30 cm depth for the non-cultivated soils, accounting for 75.1% of the total SOC at the same depth. There was significant positive relationship between soil clay plus silt content and SOC < 20 μm in non-cultivated soils. Accordingly, a model of the maximum SOC < 20 μm in 0–30 cm depth of non-cultivated Black soils was developed: y = 0.36x where y is the maximum SOC < 20 μm pool (g C kg−1) and x is the percentage of clay + silt (<20 μm) content. The average content of SOC < 20 μm was 18.7 g C kg−1 at 0–30 cm depth for cultivated soils, accounting for 81.5% of total SOC. This average value of SOC was 4.4 g C kg−1 less than the maximum value (23.1 g C kg−1) and accounted for 55.0% of the difference of SOC between non-cultivated and cultivated Black soils. Cultivation resulted in 45.0% loss of sand-sized (>20 μm) SOC concentration relative to SOC < 20 μm. This result indicates that SOC < 20 μm and sand-sized SOC both play important roles in SOC dynamics resulting from management practices. This model can be applied to calculate the actual potential to restore SOC for cultivated Black soils under conservation tillage in NE China.  相似文献   

15.
大气CO2浓度升高对土壤碳库的影响   总被引:6,自引:1,他引:6  
土壤碳库是输入、输出土壤碳量的平衡:大气CO2浓度升高有可能通过生态系统中的各种生理过程来增加输入土壤的碳量,输入土壤碳量的增加使土壤成为一个潜在的碳汇,有可能缓解大气CO2浓度的升高;但另一方面输入土壤碳量的增加,为微生物的生长提供了能量,从而提高了微生物的活性,因此土壤呼吸增强,土壤碳输出增加.本文综述了大气CO2浓度升高对土壤碳输入、输出的影响以及目前研究中存在的争论,并提出有待进一步研究的领域和方向.  相似文献   

16.
The role of the organic carbon occluded within phytoliths (referred to in this text as ‘PhytOC‘) in carbon sequestration in some soils is examined. The results show that PhytOC can be a substantial component of total organic carbon in soil. PhytOC is highly resistant to decomposition compared to other soil organic carbon components in the soil environments examined accounting for up to 82% of the total carbon in well-drained soils after 1000 years of organic matter decomposition. Estimated PhytOC accumulation rates were between 15 and 37% of the estimated global mean long-term (i.e. on a millenial scale) soil carbon accumulation rate of 2.4 g C m−2 yr−1 indicating that the accumulation of PhytOC within soil is an important process in the terrestrial sequestration of carbon. The rates of phytolith production and the long-term sequestration of carbon occluded in phytoliths varied according to the overlying plant community. The PhytOC yield of a sugarcane crop was 18.1 g C m−2 yr−1, an accumulation rate that is sustainable over the long-term (millenia) and yet comparable to the rates of carbon sequestration that are achievable (but only for a few decades) by land use changes such as conversion of cultivated land to forest or grassland, or a change of tillage practices from conventional to no tillage. This process offers the opportunity to use plant species that yield high amounts of PhytOC to enhance terrestrial carbon sequestration.  相似文献   

17.
Soil microbes face highly variable moisture conditions that force them to develop adaptations to tolerate or avoid drought. Drought conditions also limit the supply of vital substrates by inhibiting diffusion in dry conditions. How these biological and physical factors affect carbon (C) cycling in soils is addressed here by means of a novel process-based model. The model accounts for different microbial response strategies, including different modes of osmoregulation, drought avoidance through dormancy, and extra-cellular enzyme production. Diffusion limitations induced by low moisture levels for both extra-cellular enzymes and solutes are also described and coupled to the biological responses. Alternative microbial life-history strategies, each encoded in a set of model parameters, are considered and their effects on C cycling assessed both in the long term (steady state analysis) and in the short term (transient analysis during soil drying and rewetting). Drought resistance achieved by active osmoregulation requiring large C investment is not useful in soils where growth in dry conditions is limited by C supply. In contrast, dormancy followed by rapid reactivation upon rewetting seems to be a better strategy in such conditions. Synthesizing more enzymes may also be advantageous because it causes larger accumulation of depolymerized products during dry periods that can be used upon rewetting. Based on key model parameters, a spectrum of life-history strategies thus emerges, providing a possible classification of microbial responses to drought.  相似文献   

18.
西南喀斯特地区是我国主要的生态脆弱区之一,石漠化严重,旱涝灾害频发。植被恢复是提升脆弱生态系统土壤碳氮固持的有效方式,但该区不同植被恢复方式土壤碳氮动态监测的研究还很缺乏。本研究以典型喀斯特峰丛洼地为对象,选取人工林、牧草地、人工林+牧草地、撂荒地自然恢复4种最主要的植被恢复方式为研究对象,以耕地作为对照,对比分析退耕前(2004年)、退耕10年(2014年)和13年后(2017年)土壤碳氮储量动态变化特征。其中2004—2014年研究区未发生极端内涝灾害, 2014—2017年连续发生2次极端内涝灾害事件。研究结果表明,退耕10年后, 4种恢复方式下土壤有机碳(SOC)储量均显著增加,但退耕13年后,除撂荒地SOC持续增加外,其他3种恢复方式下SOC表现出下降趋势。植被恢复后土壤全氮(TN)储量提升相对缓慢,退耕10年仅牧草地显著增加,退耕13年后人工林+牧草和撂荒地TN增加,且撂荒地在退耕后呈持续增加趋势。相关性分析结果表明,土壤交换性Ca~(2+)与SOC、TN均呈显著正相关关系,且与2014年相比, 2017年不同植物恢复方式下土壤交换性Ca~(2+)均显著下降,这可能与研究区2015年和2016年连续内涝灾害有关。以上结果说明,不同恢复方式均能显著提升喀斯特地区土壤碳氮固持,并以自然恢复最佳,其生态系统能有效抵御极端气候灾害带来的负面影响。  相似文献   

19.
Soil organic carbon and nitrogen are key elements of sustainable agriculture. Converting forest land and grassland to arable land is known to decrease the content of soil organic carbon (SOC), whereas converting land under annual crops into perennial grasslands has the potential to increase organic C and N sequestration, an assumption tested in this study. Compared to the levels in reed meadows, SOC and total nitrogen (TN) stocks in the top layer of 2489 Mg soil ha−1 (about 0–15 cm depth) significantly increased 3 years after the conversion, despite a slight decrease numerically in the first year following the conversion. And the mass of light fraction organic carbon (LFOC), total extractable carbon (TEC), humic acid carbon (HAC), and fulvic acid carbon (FAC) stocks all decreased significantly in the first year in the top layer but recovered after 3 years. In the deeper layer of 2549 Mg soil ha−1 (about 15–30 cm depth), however, the levels of SOC and heavy fraction organic carbon (HFOC) stocks began increasing from the first year itself. During the period of 1–10 years after the conversion, the degree of humification rate (HR) for the deeper layer were consistent, averaging 30%, whereas the same parameters in the top layer stabilized after 3 years at 33%. After 10 years of conversion, the soil recorded higher levels of SOC and TN stocks, used as indicators in this study, than those that had prevailed in the reed meadows, demonstrating the positive combined effects of the conversion on the retention of atmospheric C-CO2 in the soil. This study suggests that proper management of alfalfa fields can maintain or even improve chemical and physical quality of converted reed meadows soils.  相似文献   

20.
 Changes in precipitation and soil water availability predicted to accompany global climate change would impact grasslands, where many ecosystem processes are influenced by water availability. Soil biota, including microarthropods, also are affected by soil water content, although little is known about how climate change might affect their abundance and distribution. The goal of this study was to examine soil microarthropod responses to altered soil water availability in tallgrass prairie ecosystems. Two separate experiments were done. The first utilized control and irrigated plots along a topographic gradient to examine the effects of soil water content on microarthropod densities. Microarthropods, mainly Acari, were significantly less abundant in irrigated plots and were generally less abundant at the wetter lowland sites. The second study utilized reciprocal core transplants across an east-west regional precipitation gradient. Large, intact cores were transplanted between a more mesic tallgrass site (Konza Prairie) and a more arid mixed-grass site (Hays) to determine the effects of different soil water regimes on microarthropod abundance and vertical distribution. Data from non-transplanted cores indicated greater total microarthropod densities at the drier Hays site, relative to the wetter Konza Prairie site. Data from the transplanted cores indicated significant effects of location on Acari densities in cores originating from Hays, with higher densities in cores remaining at Hays, relative to those transplanted to Konza. Acari densities in cores originating from Konza were not affected by location; however, oribatid mite densities generally were greater in cores remaining at Konza Prairie. These results confirm the importance of soil water content in affecting microarthropod densities and distributions in grasslands, and suggest complex, non-linear responses to changes in water availability. Received: 14 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号