首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
基于热红外视频的生猪体温检测过程中,视频中保育期生猪头部姿态变化大,且耳根区域小,导致头部和耳根区域定位精度低,影响生猪耳根温度的精准检测。针对以上问题,本文提出了一种基于改进YOLO v4(Mish Dense YOLO v4,MD-YOLO v4)的生猪耳根温度检测方法,构建了生猪关键部位检测模型。首先,在CSPDarknet-53主干网络中,添加密集连接块,以优化特征转移和重用,并将空间金字塔池化(Spatial pyramid pooling, SPP)模块集成到主干网络,进一步增加主干网络感受野;其次,在颈部引入改进的路径聚合网络(Path aggregation network, PANet),缩短多尺度特征金字塔图的高、低融合路径;最后,网络的主干和颈部使用Mish激活函数,进一步提升该方法的检测精度。试验结果表明,该模型对生猪关键部位检测的mAP为95.71%,分别比YOLO v5和YOLO v4高5.39个百分点和6.43个百分点,检测速度为60.21 f/s,可满足实时检测的需求;本文方法对热红外视频中生猪左、右耳根温度提取的平均绝对误差分别为0.26℃和0.21℃...  相似文献   

2.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

3.
为使巡检机器人能够对体积小且密集、形态多变、数量多且分布不均的害虫进行高效精准识别,提出了一种基于改进YOLO v7的害虫识别方法。该方法将CSP Bottleneck与基于移位窗口Transformer(Swin Transformer)自注意力机制相结合,提高了模型获取密集害虫目标位置信息的能力;在路径聚合部分增加第4检测支路,提高模型对小目标的检测性能;将卷积注意力模块(CBAM)集成到YOLO v7模型中,使模型更加关注害虫区域,抑制背景等一般特征信息,提高被遮挡害虫的识别精确率;使用Focal EIoU Loss损失函数减少正负样本不平衡对检测结果的影响,提高识别精度。采用基于实际农田环境建立的数据集的实验结果表明,改进后算法的精确率、召回率及平均精度均值分别为91.6%、82.9%和88.2%,较原模型提升2.5、1.2、3个百分点。与其它主流模型的对比实验结果表明,本文方法对害虫的实际检测效果更优,对解决农田复杂环境下害虫的精准识别问题具有参考价值。  相似文献   

4.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。  相似文献   

5.
甜椒在生长发育过程中容易产生畸形果,机器代替人工对甜椒畸形果识别和摘除一方面可提高甜椒品质和产量,另一方面可解决当前人工成本过高、效率低下等问题。为实现机器人对甜椒果实的识别,提出了一种基于改进YOLO v7-tiny目标检测模型,用于区分正常生长和畸形生长的甜椒果实。将无参数注意力机制(Parameter free attention module, SimAM)融合到骨干特征提取网络中,增强模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)损失替换原损失函数CIOU(Complete intersection over union),加快模型收敛并降低损失值;使用SiLU激活函数代替原网络中的Leaky ReLU,增强模型的非线性特征提取能力。试验结果表明,改进后的模型整体识别精确度、召回率、平均精度均值(Mean average precision, mAP)mAP0.5、mAP0.5-0.95分别为99.1%、97.8%、98.9%、94.5%,与改进前相比,分别提升5.4、4.7、2.4、10.7个百分点,模型内存占用量为 10.6MB,单幅图像检测时间为4.2ms。与YOLO v7、Scaled-YOLO v4、YOLOR-CSP等目标检测模型相比,模型在F1值上与YOLO v7相同,相比Scaled-YOLO v4、YOLOR-CSP分别提升0.7、0.2个百分点,在mAP0.5-0.95上分别提升0.6、1.2、0.2个百分点,而内存占用量仅为上述模型的14.2%、10.0%、10.0%。本文所提出的模型实现了小体量而高精度,便于在移动端进行部署,为后续机械化采摘和品质分级提供技术支持。  相似文献   

6.
为了有效地解决传统车辆检测算法中存在的泛化能力差、识别率不高的问题,提出了一种基于改进YOLO v3的车辆检测算法.改进的车辆算法对原YOLO v3中的模型进行剪枝处理,采用Darknet-53网络结构提取特征,同时结合回归损失函数GIOU算法对检测精度进行提高.在运用K-means++聚类分析算法处理数据基础上,运用...  相似文献   

7.
针对玉米种质资源遗传多样性丰富导致雄穗大小、形态结构及颜色呈现较大差异,无人机搭载可见光传感器相比地面采集图像分辨率低,以及图像中部分雄穗过小、与背景相似度高、被遮挡、相互交错等情况带来的雄穗检测精度低的问题,提出了一种改进YOLO v7-tiny模型的玉米种质资源雄穗检测方法。该方法通过在YOLO v7-tiny中引入SPD-Conv模块和VanillaBlock模块,以及添加ECA-Net模块的方式,增强模型对雄穗特征的提取能力。利用自建的玉米种质资源雄穗数据集,训练并测试改进模型。结果表明,改进YOLO v7-tiny的平均精度均值为94.6%,相比YOLO v7-tiny提升1.5个百分点,相比同等规模的轻量级模型YOLO v5s、YOLO v8s分别提升1.0、3.1个百分点,显著降低了图像中雄穗漏检及背景误检为雄穗的发生,有效减少了单穗误检为多穗和交错状态下雄穗个数误判的情况。改进YOLO v7-tiny模型内存占用量为17.8MB,推理速度为231f/s。本文方法在保证模型轻量化的前提下提升了雄穗检测精度,为玉米种质资源雄穗实时、精准检测提供了技术支撑。  相似文献   

8.
花椒树产果量大,枝干纵横交错,树叶茂密,给花椒的自动化采摘带来了困难。因此,本文设计一种基于改进YOLO v5的复杂环境下花椒簇的快速识别与定位方法。通过在主干提取网络CSPDarknet的CSPLayer层和Neck的上采样之后增加高效通道注意力ECA(Efficient channel attention)来简化CSPLayer层的计算量,提升了特征提取能力。同时在下采样层增加协同注意力机制CA(Coordinate attention),减少下采样过程中信息的损失,强化特征空间信息,配合热力图(Grad-CAM)和点云深度图,来完成花椒簇的空间定位。测试结果表明,与原YOLO v5相比较,改进的网络将残差计算减少至1次,保证了模型轻量化,提升了效率。同帧数区间下,改进后的网络精度为96.27%,对比3个同类特征提取网络YOLO v5、YOLO v5-tiny、Faster R-CNN,改进后网络精确度P分别提升5.37、3.35、15.37个百分点,连株花椒簇的分离识别能力也有较大提升。实验结果表明,自然环境下系统平均识别率为81.60%、漏检率为18.39%,能够满足花椒簇识别...  相似文献   

9.
奶山羊乳房区域的准确提取是奶山羊非侵入式体温检测的关键,但受乳房区域遮挡及热红外图像分辨率不高等因素影响,其检测精度尚待进一步提升。基于热红外成像技术,提出了一种基于改进YOLO v5s的奶山羊乳房关键部位检测方法。通过将原模型Backbone网络的部分卷积模块替换为ShuffleNetV2结构,以达到降低网络部署和训练过程中的参数量、实现轻量化网络设计的目的。通过在Neck网络检测头(Head)前端引入CBAM注意力机制,以达到在降低网络复杂程度的同时保证奶山羊乳房区域检测精度的目的。本研究采集了包含完整信息、残缺信息和边缘模糊的孕期奶山羊乳房红外图像4611幅,并在部位标注后进行模型训练。经测试,模型精确率为93.7%,召回率为86.1%,平均精度均值为92.4%,参数量为8×105,浮点运算量为1.9×109。与YOLO v5n、YOLO v5s、YOLO v7-tiny、YOLO v7、YOLO v8n和YOLO v8s目标检测网络相比,网络的精确率分别提高1.9、1.2、1.6、4.3、3.5、2.7个百分点,召回率提高3.4、5.0、0.1、2.6、0.9、1.5个百分点,参数量降低1.1×106、6.2×106、5.2×106、3.6×107、2.4×106和1.0×107,浮点运算量降低2.6×109、1.4×1010、1.1×1010、1.0×1011、6.8×109和2.7×1010。试验结果表明,本研究所提出的网络可以实现奶山羊乳房关键部位的精确检测,且在不损失检测精度的基础上显著降低网络的参数量,有利于网络在不同环境下的部署和使用,可为奶山羊非接触式体温监测系统设计提供借鉴。  相似文献   

10.
已有火龙果检测方法仅针对单一性能指标,难以满足农业真实场景的需要,为此提出了一种精准高效的火龙果品质与成熟度双指标检测方法。首先,利用自适应鉴别器增强的样式生成对抗网络扩充火龙果图像,建立复杂环境火龙果数据集。采用伽马变换进行图像增强,凸显火龙果特征,降低光照环境的影响。其次,提出了YOLO v7-RA模型。通过设计ELAN_R3替代ELAN(Efficient layer aggregation network)模块,减少主干网络对重复特征的提取,增强模型对细粒度特征关注度,提高双指标检测准确率。融入混合注意力机制(Mixture of self-attention and convolution,ACmix),增强模型对特征的提取和整合能力,降低杂乱背景信息干扰。最后,通过实验验证了YOLO v7-RA模型的检测性能。实验结果表明,该方法精准率为97.4%,召回率为97.7%,mAP0.5为96.2%,FSP为74f/s,实现了检测精度与检测速度的均衡。即使在遮挡情况下,YOLO v7-RA模型检测精准率仍达到91.4%,具有较好泛化能力,能够为火龙果智能化采摘的发展提供技术支持。  相似文献   

11.
基于改进YOLO v4网络的马铃薯自动育苗叶芽检测方法   总被引:1,自引:0,他引:1  
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。  相似文献   

12.
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。  相似文献   

13.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号