首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Intermittent irrigation is an important option for mitigating CH4 emissions from paddy fields. In order to better understand its controlling processes in CH4 emission, CH4 fluxes, CH4 production and oxidation potentials in paddy soils, and 13C-isotopic signatures of CH4 were observed in field and incubation experiments. The relative contribution of acetate to total CH4 production (fac) and fraction of CH4 oxidized (fox) in the field was also calculated using the isotopic data. At the beginning of the rice season, the theoretical ratio of acetate fermentation: H2/CO2 reduction = 2:1 was reached, however, in the late season H2/CO2-dependent methanogenesis became dominant. Compared to continuous flooding, intermittent irrigation significantly reduced CH4 production potential and slightly decreased fac-value, indicating methanogens, particularly acetate-utilizing methanogens, were inhibited. CH4 oxidation was very important, especially in paddy fields under intermittent irrigation where 19–83% of the produced CH4 was oxidized. Intermittent irrigation enhanced CH4 oxidation potential slightly and raised fox-value significantly relative to continuous flooding. Intermittent irrigation significantly decreased CH4 flux creating a more positive δ13C-value of emitted CH4 by 12–22‰. A significant negative correlation was found between CH4 fluxes and values of δ13CH4 suggesting that the less the CH4 oxidation, the higher the CH4 emission, and the lower the δ13C-value of emitted CH4. Collectively, the findings show that intermittent irrigation reduced the seasonal CH4 production potential by 45% but increased the fraction of CH4 oxidized by 45–63%, thus decreasing the seasonal CH4 emission from the paddy fields by 71%, relative to continuous flooding.  相似文献   

2.
Rice planting (RP) is significant to methane (CH4) emissions from paddy fields, but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4 production (Fac) and the fraction of CH4 oxidized (Fox) is poorly understood. To quantify the responses of the Fac and Fox to RP, we investigated CH4 fluxes, CH4 production and oxidation potentials, dissolved CH4 concentrations, and their stable carbon isotopes in a flooded paddy soil. The mcrA and pmoA gene copies were also determined by quantitative polymerase chain reaction (qPCR). Compared with the unplanted soil (control, CK), the seasonal CH4 emissions from the planted soil were significantly enhanced, 13.6 times, resulting in large decreases in the CH4 concentrations in the soil solution. This indicated that much more CH4 was released into the atmosphere by the RP than was stored in the soils. Acetoclastic methanogenesis became more important from the tillering stage (TS) to the ripening stage (RS) for the CK, with Fac values increased from 17%–20% to 46%–55%. With RP, the Fac values were enhanced by 10%–20%, and it significantly increased the copy numbers of the mcrA gene at the four rice stages (TS, booting stage (BS), grain-filling stage (GS), and RS). Furthermore, the effect of the RP on the abundance of the mcrA gene was highly concurrent with the effect on the Fac values. At the TS, the Fox values at the soil-water interface were around 50%–75% for the CK, being 15%–20% lower than those of the RP in the rhizosphere. It increased to 65%–100% at the GS, but was reduced by 20%–30% after the RP. These differences might be because the copy numbers of the pmoA gene were significantly raised at the TS while lowered at the GS by the RP. This was further demonstrated by the strong correlations between the effect of the RP on the abundance of the pmoA gene and the effect on the Fox values. These findings suggest that RP markedly impacts on the abundances of the mcrA and pmoA genes, affecting the pathway of CH4 production and the fraction of CH4 oxidization, respectively.  相似文献   

3.
Rice fields are an important source for atmospheric CH4, but the effects of fertilization are not well known. We studied the turnover of CH4 in rice soil microcosms without and with addition of potassium phosphate. Height and tiller number of rice plants were higher in the fertilized than in the unfertilized microcosms. Emission rates of CH4 were also higher, but porewater concentrations of CH4 were lower. The δ13C values of the emitted CH4 and of the CH4 in the porewater were both 2-6% higher in the fertilized microcosms than in the control. Potassium phosphate did not affect rate and isotopic signature of CH4 production in anoxic soil slurries. On the other hand, roots retrieved from fertilized microcosms at the end of incubation exhibited slightly higher CH4 production rates and slightly higher CH4-δ13C values compared to roots from unfertilized plants. Addition of potassium phosphate to excised rice roots generally inhibited CH4 production and resulted in increasingly lower δ13C values of the produced CH4. Fractionation of 13C during plant ventilation (i.e. δ13C in pore water CH4 versus CH4 emitted) was larger in the fertilized microcosms than in the control. Besides plant ventilation, this difference may also have been caused by CH4 oxidation in the rhizosphere. However, calculation from the isotopic data showed that less than 27% of the produced CH4 was oxidized. Collectively, our results indicate that potassium phosphate fertilization stimulated CH4 emission by enhancing root methanogenesis, plant ventilation and/or CH4 oxidation, resulting in residence times of CH4 in the porewater in the order of hours.  相似文献   

4.
Pot experiments were conducted to monitor the changes in compositions and δ13C values of soil-trapped CH4 and C02 in flooded rice soil with and without rice plants or rice straw. Incorporation of rice straw increased the concentration of CH4 and C02 accumulated in soil, and the quantities of emitted CH4 to the atmosphere. Rice plants reduced the concentration of soil-trapped CH4 and CO2, and the decreased portion of CH4 was replaced by N2. A significantly negative correlation was found between soil-trapped CH4 and N2. The presence of rice plants increased the δ13C values of CH4. The δ13C values of CH4 tended to increase toward the end of the growing season and were positively correlated with concentration of soil-trapped CH4. A positive correlation between δ13C values of CH4 and C02, and between the δ13C values of CH4 and its concentration, were observed. The CH4 in the rice stems was 4–14% enriched in13C relative to soil-trapped CH4. In contrast, CO2 in rice plant stems was 1–9% lighter in13C relative to soil-trapped C02. These results are discussed in relation to the precursor pools and pathways of methanogenesis.  相似文献   

5.
CH4 emission from irrigated rice field is one of the major sources in the global budget of atmoshperic CH4. Rates of CH4 emission depend on both CH4 production in anoxic parts of the soil and on CH4 oxidation at oxic-anoxic interfaces. In the present study we used planted and unplanted rice microcosms and characterized them by numbers of CH4-oxidizing bacteria (MOB), porewater CH4 and O2 concentrations and CH4 fluxes. Plant roots had a stimulating effect on both the number of total soil bacteria and CH4-oxidizing bacteria as determined by fluorescein isothiocyanate fluorescent staining and the most probable number technique, respectively. In the rhizosphere and on the root surface CH4-oxidizing bacteria were enriched during the growth period of tice, while their numbers remained constant in unplanted soils. In the presence of rice plants, the porewater CH4 concentration was significantly lower, with 0.1–0.4mM CH4, than in unplanted microcosms, with 0.5–0.7mM CH4. O2 was detected at depths of up to 16 mm in planted microcosms, whereas it had disappeared at a depth of 2 mm in the unplanted experiments. CH4 oxidation was determined as the difference between the CH4 emission rates under oxic (air) and anoxic (N2) headspace, and by inhibition experiments with C2H2. Flux measurements showed varying oxic emission rates of between 2.5 and 29.0 mmol CH4m-2 day-1. An average of 34% of the anoxically emitted CH4 was oxidized in the planted microcosms, which was surprisingly constant. The rice rhizosphere appeared to be an important oxic-anoxic interface, significantly reducing CH4 emission.  相似文献   

6.
Submerged rice paddies are a major source of methane (CH4) which is the second most important greenhouse gas after carbon dioxide (CO2). Accelerating rice straw decomposition during the off-rice season could help to reduce CH4 emission from rice paddies during the single rice-growth season in cold temperate regions. For understanding how both temperature and moisture can affect the rate of rice straw decomposition during the off-rice season in the cold temperate region of Tohoku district, Japan, a modeling incubation experiment was carried out in the laboratory. Bulk soil and soil mixed with 2% of δ13C-labeled rice straw with a full factorial combination of four temperature levels (?5 to 5, 5, 15, 25°C) and two moisture levels (60% and 100% WFPS) were incubated for 24 weeks. The daily change from ?5 to 5°C was used to model the freezing–thawing cycles occurring during the winter season. The rates of rice straw decomposition were calculated by (i) CO2 production; (ii) change in the soil organic carbon (SOC) content; and (iii) change in the δ13C value of SOC. The results indicated that both temperature and moisture affected the rate of rice straw decomposition during the 24-week aerobic incubation period. Rates of rice straw decomposition increased not only with high temperature, but also with high moisture conditions. The rates of rice straw decomposition were more accurately calculated by CO2 production compared to those calculated by the change in the SOC content, or in its δ13C value. Under high moisture at 100% WFPS condition, the rates of rice straw decomposition were 14.0, 22.2, 33.5 and 46.2% at ?5 to 5, 5, 15 and 25°C temperature treatments, respectively. While under low moisture at 60% WFPS condition, these rates were 12.7, 18.3, 31.2 and 38.4%, respectively. The Q10 of rice straw decomposition was higher between ?5 to 5 and 5°C than that between 5 and 15°C and that between 15 and 25°C. Daily freezing–thawing cycles (from ?5 to 5°C) did not stimulate rice straw decomposition compared with low temperature at 5°C. This study implies that to reduce CH4 emission from rice paddies during the single rice-growth season in the cold temperate regions, enhancing rice straw decomposition during the high temperature period is very important.  相似文献   

7.
Slag-type silicate fertilizer, which contains high amount of active iron oxide, a potential source of electron acceptor, was applied at the rate of 0, 2, 6, 10, and 20 Mg ha−1 to reduce methane (CH4) emission from rice planted in potted soils. Methane emission rates measured by closed chamber method decreased significantly with increasing levels of silicate fertilizer application during rice cultivation. Soil redox potential (Eh) decreased rapidly after flooding, but floodwater pH and soil pH increased significantly with increasing levels of silicate fertilizer application. Iron concentrations in potted soils and in percolated water significantly increased with the increasing levels of silicate fertilizer application, which acted as oxidizing agents and electron acceptors, and thereby suppressed CH4 emissions. Silicate fertilization significantly decreased CH4 production activity, while it increased carbon dioxide (CO2) production activity. Rice plant growth, yield parameters, and grain yield were positively influenced by silicate application levels. The maximum increase in grain yield (17% yield increase over the control) was found with 10 Mg ha−1 silicate application along with 28% reduction in total CH4 flux during rice cultivation. It is, therefore, concluded that slag-type silicate fertilizer could be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity and restoring the soil nutrient balance in rice paddy soil.  相似文献   

8.
Wild rice (Oryza rufipogon) is a problematic weed in fields of cultivated rice (Oryza sativa). We hypothesized that the composition and/or the activity of the methanogenic microbial communities might be different in soil grown with cultivated versus wild rice. We used samples from Hainan, China, where wild rice grew on a field adjacent to cultivated rice. The composition of the methanogenic archaeal community was analyzed in samples of rice soil by targeting the 16S rRNA gene. Analysis of the terminal restriction fragment length polymorphism (T-RFLP) showed similar patterns in soil from wild versus cultivated rice. Sequences of archaeal 16S rRNA genes also showed similar composition in soil from wild versus cultivated rice, revealing the presence of Methanosarcinaceae, Methanosaetaceae, Methanobacteriales, Methanocellales (Rice Cluster I), Rice Cluster II, Crenarchaeota Group I.3 and Crenarchaeota Group I.1b. Incubation of soil samples under anoxic conditions generally resulted in vigorous CH4 production after a lag phase of 7-8 days. Production of CH4 was partially inhibited by methyl fluoride, a specific inhibitor of acetoclastic methanogenesis, resulting in nearly stoichiometric accumulation of acetate. CO2 was produced without lag phase. The δ13C of the produced CO2 was slightly lower in soil grown with cultivated rice versus wild rice, reflecting the δ13C of organic matter, which was about −29‰ for cultivated rice soil and about −24‰ for wild rice soil. The δ13C of the produced CH4 and the acetate that accumulated in the presence of CH3F was much more negative in cultivated versus wild rice soil, mainly since the isotopic fractionation factors for hydrogenotrophic methanogenesis were higher for soil from cultivated rice (α = 1.054) versus wild rice (α = 1.039). However, the percentage contribution of hydrogenotrophic methanogenesis to total CH4 production was similar in both soils (27-35%). In conclusion, although the two soils exhibited different δ13C values of soil organic matter and derived products, they were similar with respect to rates and composition of the methanogenic communities.  相似文献   

9.
《Soil biology & biochemistry》2001,33(7-8):965-971
Laboratory experiments were conducted to find out under which conditions the soil from Italian rice fields could change from a source into a sink of atmospheric CH4. Moist (30% H2O=68% of the maximum water holding capacity (whc)) rice field soil oxidized CH4 with biphasic kinetics, exhibiting both a low (145 ppmv CH4) and a high (20,200 ppmv CH4) Km value and Vmax values of 16.8 and 839 nmol gdw−1 h−1, respectively. The activity with the low Km allowed the oxidation of atmospheric CH4. Uptake rates of high CH4 concentrations (16.5% v/v) and of O2 linearly decreased with aggregate size of soil between 2 and 10 mm. Atmospheric CH4 (1.8 ppmv) was consumed in soil aggregates <6 mm, but soil aggregates >6 mm released CH4 into the atmosphere. Similarly, net uptake of atmospheric CH4 turned into net release of CH4 when the soil moisture was decreased below a water content of about 20% whc. The uptake rate of atmospheric CH4 increased threefold when the soil was amended with sterile quartz sand. Flooded microcosms with non-amended and quartz-amended soil emitted CH4 into the atmosphere. The CH4 emission rate increased when the flux was measured under an atmosphere of N2 instead of air, indicating that 30–99% of the produced CH4 was oxidized in the oxic soil surface layer. Removal of the flood water resulted in increase of CH4 emission rates until a water content of about 75–82% whc was reached, and subsequently in a rapid decrease. However, the soil microcosms never showed net uptake of atmospheric CH4. Our results show that the microorganisms consuming atmospheric CH4 were inactivated at an earlier stage of drainage than the microorganisms producing CH4, irrespective of the soil porosity which was adjusted by addition of quartz sand. Hence, it is unlikely that the Italian rice fields can act as a net sink for atmospheric CH4 even when drained.  相似文献   

10.
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4 emission. Potassium application prevented a drop in the redox potential and reduced the contents of active reducing substances and Fe2+ content in the rhizosphere soil. Potassium amendment also inhibited methanogenic bacteria and stimulated methanotrophic bacterial population. Results suggest that, apart form producing higher plant biomass (both above- and underground) and grain yield, K amendment can effectively reduce CH4 emission from flooded soil and could be developed into an effective mitigation option, especially in K-deficient soils.  相似文献   

11.
The combined seeding and cropping of non-leguminous and leguminous cover crops during the cold fallow season is recommended as an important agronomic practice to improve total biomass productivity and soil fertility in mono-rice (Oryza sativa L.) cultivation system. However, application of plant residues as green manure can increase methane (CH4) emission during rice cultivation and affect rice quality and productivity, but its effects are not well examined. In this field study, the mixture of barley (Hordeum vulgare R.) and hairy vetch (Vicia villosa R., hereafter, vetch) seeds with 75 % recommended dose (RD 140 kg ha?1) and 25 % RD (90 kg ha?1), respectively, were seeded after rice harvesting in late November, 2010, and harvested before rice transplanting in early June 2011. Total aboveground biomass was 36 Mg ha?1 (fresh weight basis with 68 % moisture content), which was composed with 12 Mg ha?1 of barley and 24 Mg ha?1 of vetch. In order to determine the optimum recycling ratio of biomass application that can minimize CH4 emission without affecting rice productivity, different recycling ratios of 0, 25, 50, 75, and 100 % of the total harvested biomass were incorporated as green manure 1 week before rice transplanting in a typical temperate paddy soil. The same rates of chemical fertilizers (N–P2O5–K2O?=?90–45–58 kg ha?1) were applied in all treatments. Daily mean CH4 emission rates and total CH4 fluxes were significantly (p?<?0.05) increased with increasing application rates of cover crop biomass. Rice productivity also significantly (p?<?0.05) increased with biomass application, but the highest grain yield (53 % increase over the control) was observed for 25 % recycling. However, grain quality significantly (p?<?0.05) decreased with increasing cover crop application rates above 25 % recycling ratio, mainly due to extended vegetative growth periods of rice plants. Total CH4 flux per unit grain yield, an indicator used to simultaneously compare CH4 emission impact with rice production, was not statistically different between 25 % biomass recycling ratio and the control but significantly increased with increasing application rates. Conclusively, the biomass recycling ratio at 25 % of combined barley and vetch cover crops as green manure might be suitable to sustain rice productivity without increasing CH4 emission impact in mono-rice cultivation system.  相似文献   

12.
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated cumulative emission flux of CH4 was lowered by ∼20% in butachlor-treated field plots compared with that of an untreated control. Concurrently, ebollition flux of CH4 was also retarded in butachlor-treated field plots by about 81% compared with that of control plots. Significant relationships existed between CH4 emission and redox potential (E h) and Fe2+ content of the flooded soil. Application of butachlor retarded a drop in soil redox potential as well as accumulation of Fe2+ in treated field plots. Methanogenic bacterial population, counted at the maturity stage of the crop, was also low in butachlor-treated plots, indicating both direct and indirect inhibitory effects of butachlor on methanogenic bacterial populations and their activity. Results indicate that butachlor, even at field-application level, can effectively abate CH4 emission and ebollition from flooded soils planted to rice whilst maintaining grain yield. Received: 15 March 2000  相似文献   

13.
Rice‐straw amendment increased methane production by 3‐fold over that of unamended control. Application of P as single superphosphate at 100 μg (g soil)–1 inhibited methane (CH4) production distinctly in flooded alluvial rice soil, in the absence more than in the presence of rice straw. CH4 emission from rice plants (cv. IR72) from alluvial soil treated with single superphosphate as basal application, in the presence and absence of rice straw, and held under non‐flooded and flooded conditions showed distinct variations. CH4 emission from non‐flooded soil amended with rice straw was high and almost similar to that of flooded soil without rice‐straw amendment. The cumulative CH4 efflux was highest (1041 mg pot–1) in rice‐straw‐amended flooded soil. Appreciable methanogenic reactions in rice‐straw‐amended soils were evident under both flooded and non‐flooded conditions. Rice‐straw application substantially altered the balance between total aerobic and anaerobic microorganisms even in non‐flooded soil. The mitigating effects of single‐superphosphate application or low‐moisture regime on CH4 production and emission were almost nullified due to enhanced activities of methanogenic archaea in the presence of rice straw.  相似文献   

14.
This study evaluated the effects of rice straw and water regimes on CH4 and N2O emissions from paddy fields for two rice growing seasons (summer 2014 and spring 2015). Water regimes included alternating wet–dry irrigation (AWD) maintained at three levels (–5 cm, – 10 cm and –15 cm) in comparison to continuous flooding irrigation (CF). Rice straw (5 t ha–1) was incorporated into the top soil (0 – 15 cm), distributed and burned in situ. Results showed that using burned in situ rice straw was found to reduce seasonal cumulative CH4 emission (24–34% in summer; 18–28% in spring), N2O emission (21–32% in summer; 22–29% in spring) and lower rice yield (8–9%) than rice straw incorporation into top soil. AWD methods reduced the amount of CH4 production (22.6–41.5%) and increased N2O emission (25–26%) without any decrease in rice yield. Rice straw incorporation into the top soil with AWD had higher water productivity (23–37%) than rice straw when burned in situ with CF. The results conclude that AWD and rice straw management can be employed as mitigation strategy for CH4 and N2O emissions from paddy fields in Central Vietnam.  相似文献   

15.
Laboratory incubation experiments were conducted to study the effects of soil chemical and physical properties on CH4 emission and entrapment in 16 selected soils with a pH range of 4.7–8.1, organic matter content of 0.72–2.38%, and soil texture from silt to clay. There was no significant correlation with CH4 emission for most of the important soil properties, including soil aerobic pH (measured before anaerobic incubation), total Kjeldahl N, cation exchange capacity, especially soil organic matter, and soil water-soluble C, which were considered to be critical controlling factors of CH4 emission. A lower CH4 emission was observed in some soils with a higher organic matter content. Differences in soil Fe and Mn contents and their chemical forms contributed to the this observation. A significant correlation between the CH4 emission and the soil organic C content was observed only after stratifying soils into subgroups according to the level of CH4 emission in soils not amended with organic matter. The results also showed that the soil redox potential (Eh), anaerobic pH, anerobic pH, and biologically reducible Fe and Mn affected CH4 emission significantly. Urea fertilization promoted CH4 emission in some soils and inhibited it in others. This result appeared to be related to the original soil pH. CH4 entrapment was positively correlated with soil clay content, indicating the importance of soil physical characteristics in reducing CH4 emissions to the atmosphere.  相似文献   

16.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

17.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

18.
Abstract

The relationships between methane (CH4) emission from flooded rice paddies and soil chemical properties were investigated using eight different soils in a pot experiment. Since CH4 is produced in paddy soil microbiologically when reducing conditions are sufficiently developed, the amounts of oxidizing agents including free iron (Fe)(III), amorphous Fe(III), easily reducible manganese (Mn), nitrate (NO3 ), and sulfate (SO4 2‐), and indexes of reducing agents including total carbon (C), total nitrogen (N), and easily decomposable C, were measured as possible decreasing and increasing factors in CH4 emission. The seasonal variations in CH4 emission rates were similar in pattern among the soils used. However, the amount of emitted CH4 varied largely, with the maximum total CH4 emission (from a brown lowland soil, 1,535 mg pot‐1) being 3.8 times that of the minimum (from a gley soil, 409 mg pot‐1). No correlation was found between the total CH4 emission and any single factor investigated. However, a statistically significant equation was found through multiple regression analysis: r=‐2.24x102 a+2.88b+6.20x102; r 2=0.821; P<0.01; where Y is the amount of emitted CH4 (mg pot‐1), a is the amount of amorphous Fe(III) (mg pot‐1), b is the amount of easily decomposable C (mg pot‐1), and r 2 is a multiple correlation coefficient adjusted for the degree of freedom. The amendment of ferric hydroxide [Fe(OH)3] to a gray lowland soil significantly decreased the CH4 emission from 1,099 to 592 mg pot‐1. This measured amount agreed well with that estimated from the above equation, 554 mg pot‐1.  相似文献   

19.

Purpose

Directly returning straw back to the paddy field would significantly accelerate methane (CH4) emission, although it may conserve and sustain soil productivity. The application of biochar (biomass-derived charcoal) in soil has been proposed as a sustainable technology to reduce methane (CH4) emission and increase crop yield. We compared the effects of either biochar or rice straw addition with a paddy field on CH4 emission and rice yield.

Materials and methods

A 2-year field experiment was conducted to investigate a single application of rice straw biochar (SC) and bamboo biochar (BC) (at 22.5 t ha?1) in paddy soil on CH4 emission and rice yield as compared with the successive application (6 t ha?1) of rice straw (RS). Soil chemical properties and methanogenic and CH4 oxidation activities in response to the amendment of biochar and rice straw were monitored to explain possible mechanism.

Results and discussion

SC was more efficient in reducing CH4 emission from paddy field than BC. Incorporating SC into paddy field could decrease CH4 emission during the rice growing cycle by 47.30 %–86.43 % compared with direct return of RS. This was well supported by the significant decrease of methanogenic activity in paddy field with SC. In comparison to a non-significant increase with BC or RS application, rice yield was significantly raised with SC amendment by 13.5 % in 2010 and 6.1 % in 2011. An enhancement of available K and P and an improvement in soil properties with SC amendment might be the main contributors to the increased crop yield.

Conclusions

These results indicated that conversion of RS into biochar instead of directly returning it to the paddy field would be a promising method to reduce CH4 emission and increase rice yield.  相似文献   

20.
Methane emission from flooded rice fields under irrigated conditions   总被引:11,自引:0,他引:11  
In a study on CH4 emission from flooded rice fields under irrigated conditions, fields planted with rice emitted more methane than unplanted fields. The CH4 efflux in planted plots varied with the rice variety and growth stage and ranged from 4 to 26 mg h-1m-2. During the reproductive stage of the rice plants, CH4 emission was high and the oxidation power of rice roots, in terms of -naphthylamine oxidation, was very low. The CH4 emission reached a maximum at midday and declined to minimum levels at midnight, irrespective of the rice variety. The peak CH4 emission at midday was associated with higher solar radiation and higher soil/water temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号