首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
《Soil biology & biochemistry》2012,44(12):2384-2396
We investigated the diversity of rhizobia isolated from different indigenous legumes in Flanders (Belgium). A total of 3810 bacterial strains were analysed originating from 43 plant species. Based on rep-PCR clustering, 16S rRNA gene and recA gene sequence analysis, these isolates belonged to Bradyrhizobium, Ensifer (Sinorhizobium), Mesorhizobium and Rhizobium. Of the genera encountered, Rhizobium was the most abundant (62%) and especially the species Rhizobium leguminosarum, followed by Ensifer (19%), Bradyrhizobium (14%) and finally Mesorhizobium (5%). For two rep-clusters only low similarity values with other genera were found for both the 16S rRNA and recA genes, suggesting that these may represent a new genus with close relationship to Rhodopseudomonas and Bradyrhizobium. Primers for the symbiotic genes nodC and nifH were optimized and a phylogenetic sequence analysis revealed the presence of different symbiovars including genistearum, glycinearum, loti, meliloti, officinalis, trifolii and viciae. Moreover, three new nodC types were assigned to strains originating from Ononis, Robinia and Wisteria, respectively. Discriminant and MANOVA analysis confirmed the correlation of symbiosis genes with certain bacterial genera and less with the host plant. Multiple symbiovars can be present within the same host plant, suggesting the promiscuity of these plants. Moreover, the ecoregion did not contribute to the separation of the bacterial endosymbionts. Our results reveal a large diversity of rhizobia associated with indigenous legumes in Flanders. Most of the legumes harboured more than one rhizobial endosymbiont in their root nodules indicating the importance of including sufficient isolates per plant in diversity studies.  相似文献   

2.
We investigated the diversity of rhizobia isolated from different indigenous legumes in Flanders (Belgium). A total of 3810 bacterial strains were analysed originating from 43 plant species. Based on rep-PCR clustering, 16S rRNA gene and recA gene sequence analysis, these isolates belonged to Bradyrhizobium, Ensifer (Sinorhizobium), Mesorhizobium and Rhizobium. Of the genera encountered, Rhizobium was the most abundant (62%) and especially the species Rhizobiumleguminosarum, followed by Ensifer (19%), Bradyrhizobium (14%) and finally Mesorhizobium (5%). For two rep-clusters only low similarity values with other genera were found for both the 16S rRNA and recA genes, suggesting that these may represent a new genus with close relationship to Rhodopseudomonas and Bradyrhizobium. Primers for the symbiotic genes nodC and nifH were optimized and a phylogenetic sequence analysis revealed the presence of different symbiovars including genistearum, glycinearum, loti, meliloti, officinalis, trifolii and viciae. Moreover, three new nodC types were assigned to strains originating from Ononis, Robinia and Wisteria, respectively. Discriminant and MANOVA analysis confirmed the correlation of symbiosis genes with certain bacterial genera and less with the host plant. Multiple symbiovars can be present within the same host plant, suggesting the promiscuity of these plants. Moreover, the ecoregion did not contribute to the separation of the bacterial endosymbionts. Our results reveal a large diversity of rhizobia associated with indigenous legumes in Flanders. Most of the legumes harboured more than one rhizobial endosymbiont in their root nodules indicating the importance of including sufficient isolates per plant in diversity studies.  相似文献   

3.
In this study, rhizobia strains isolated from white clover (Trifolium repens) root nodules were evaluated in an effort to identify an efficient nitrogen-fixing rhizobia strain that can also improve the growth of rice plants (Oryza sativa). White clover plants were collected from seven sites in south Brazil, and 78 native rhizobia isolates were obtained. The genetic diversity analysis of those isolates was carried out by BOX-polymerase chain reaction. Overall, the native rhizobia isolated showed a high genetic diversity, but when the bacterial isolates from the same site were compared, the diversity was lower. One native rhizobia, POA3 (isolated from the Porto Alegre locality), was able to promote the growth of both plants and is therefore a good candidate for new inoculant formulation. Finally, we can conclude that the community of native rhizobia symbiont of white clover plants in southern Brazil is highly diverse and the growth promotion effect of rhizobia inoculation on rice plants was more pronounced in a poor nutrient substrate condition than in a rich nutrient substrate condition.  相似文献   

4.
Hairy vetch (Vicia villosa Roth, HV) is widely grown as a legume cover crop throughout the U.S.A., with biological nitrogen fixation (BNF) through symbiosis with Rhizobium leguminosarum biovar viciae (Rlv) being one of the most sought after benefits of its cultivation. This study determined if HV cultivation history and plant genotype affect genetic diversity of resident Rlv. Soil samples were collected from within farmers’ fields at Graham, Cedar Grove and Ivanhoe sites in North Carolina and pairs of genetically similar hairy vetch genotypes used as trap hosts. A total of 519 Rlv strains were isolated from six paired field soils, three with and three without histories of HV cultivation. A total of 46 strains failed to PCR-amplify the nifH gene; however nodC PCR amplification of these nifH-negative strains resulted in amplification of 22 of the strains. Repetitive element polymerase chain reaction (rep-PCR) with BOX-A1R primer and redundancy analysis showed rhizobial diversity to vary greatly within and between fields, with over 30 BOX banding patterns obtained across the six fields. Cluster analysis of BOX-PCR banding patterns resulted in 36 genetic groups of Rlv at a similarity level of 70%, with 15 of the isolates from fields with HV history not belonging to any of the clusters. Site was found to be the main driver of isolate diversity overall, explaining 57%, of the total variation among rhizobia occupying HV nodules, followed by history of hairy vetch cultivation. Evidence of a HV host genotype influence on the populations of rhizobia that infect hairy vetch was also observed, with plant genotype explaining 12.7% of the variation among all isolates. Our results show that second to site, HV cultivation history was the most important driver of rhizobial nodule community structure and increases the genetic diversity of resident Rlv in soils.  相似文献   

5.
We have evaluated the genetic diversity and phylogeny of alfalfa rhizobia, originating from different types of soils in Serbia and their ability to establish an effective symbiosis with alfalfa (Medicago sativa L.). A collection of 65 strains isolated from root nodules of alfalfa were characterized by rep-PCR analysis, partial and complete 16S rDNA gene and recA gene sequencing, as well as atpD gene sequencing and DNA–DNA hybridizations. The results of the sequence analyses revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules. Only one strain was identified as Sinorhizobium medicae, two strains as Rhizobium tibeticum and one strain as Rhizobium sp. Despite the fact that the majority of strains were identified as S. meliloti, a high genetic diversity at strain level was detected. Almost all isolates shared the ability to nodulate and fix nitrogen with M. sativa, except 11 of them, which were incapable of fixing nitrogen with this species. About 50% of the isolates showed values of symbiotic effectiveness (SE) above 50%, while 10% of the strains were highly effective with SE values above 70%. Some of the strains which were highly effective in nitrogen fixation at the same time could intensively solubilize phosphates, offering a possibility for multipurpose inoculum development. This was the first genetic study of rhizobia isolated from this region and also the first report of natural presence of R. tibeticum in root nodules of M. sativa.  相似文献   

6.
The concept of an ecoregion, a discrete spatial area where species composition is presumed to be relatively homogeneous compared to that between areas, has become an increasingly common conservation tool. We test the effectiveness of one ecoregion delineation (World Wildlife Fund) in capturing patterns of change in species composition of birds, mammals, and trees across the United States (excluding Hawaii) and Canada, and describe the extent to which each ecoregion boundary is concurrent with relatively large changes in species composition. Digitized range maps were used to record presence/absence in 50 × 50 km equal-area grid cells covering the study area. Jaccard’s index of similarity was calculated for all pairs of cells in the same or adjacent ecoregions. The average rate at which similarity declined with geographic distance was calculated using pairs of cells within the same ecoregion (intra-ecoregion turnover) or using pairs of cells in adjacent ecoregions (inter-ecoregion turnover). The intra-ecoregion rate varies widely among ecoregions and between taxa, with trees having a faster rate of similarity decline than mammals or birds. For all three species groups, most ecoregion boundaries have similar rates across them (inter-ecoregion) than that within each adjacent ecoregion (intra-ecoregion), with the exception of zones of transition between biomes and major geographical features. Although the ecoregion concept is useful for many other conservation applications, the lack of systematic, high turnover rates along ecoregion boundaries suggests that ecoregions should not be used as a quantitative basis for delineating geographic areas of a particular taxonomic group.  相似文献   

7.
The molecular characterization of 62 rhizobial isolates obtained from root-nodules of Arachis hypogaea growing in north-western Morocco was performed. Bacteria were firstly characterized by restriction of the 16S-rDNA region, and phylogeny was inferred from 16S gene sequences. Phylogenetically, isolates were grouped with species belonging to the Bradyrhizobium and Rhizobium genera. A high degree of variability was detected among isolates in terms of their nitrogen-fixing ability. This is, to our knowledge, the first study on genetic diversity and symbiotic effectiveness of rhizobia isolated from peanut nodules grown in Morocco. This characterization provides a basis for the selection of peanut-nodulating rhizobia which may have applications in the formulation of appropriate inocula to improve peanut crop yield on Moroccan soils.  相似文献   

8.
The nodulation of provenances of Acacia seyal, Acacia tortilis and Faidherbia albida, and other indigenous multipurpose tree species were tested in 14 different soil samples collected from diverse agro-ecological zones in southern Ethiopia. Associated rhizobia were isolated from these and from excavated nodules of field standing mature trees, and phenotypically characterized. Indigenous rhizobia capable of eliciting nodules on at least one or more of the woody legume species tested were present in most of the soils. Tree species were markedly different in nodulation in the different site soils. Sesbania sesban and Acacia abyssinica showed higher nodulation ability across the different sites indicating widespread occurrence of compatible rhizobia in the soils. The nodulation patterns of the different provenances of Acacia spp. suggested the existence of intraspecific provenance variations in rhizobial affinity which can be exploited to improve N fixation through tree selection. Altogether, 241 isolates were recovered from the root nodules of trap host species and from excavated nodules. Isolates were differentiated by growth rate and colony morphology and there were very fast-, fast-, slow-, and very slow-growing rhizobia. The bulk of them (68.5%) were fast-growing acid-producing rhizobia while 25.3% were slow-growing alkali-producing types. Fast-growing alkali-producing (2.9%) and slow-growing acid-producing strains (3.3%) were isolated from trap host species and excavated nodules, respectively. All isolates fell into four colony types: watery translucent, white translucent, dull glistering and milky (curdled) type. The diversity of indigenous rhizobia in growth rate and colony morphology suggested that the collection probably includes several rhizobial genera.  相似文献   

9.
Sudan is the fourth largest exporter of groundnuts in the world, yet little is known concerning the plant-rhizobial symbiosis. A study was made on the abundance of groundnut-nodulating rhizobia in the soils of Sudan as related to soil properties and the duration since groundnuts were last planted. Also, physiological, serological and nitrogen-fixing characteristics of Sudanese rhizobia are reported. All but one of 32 sites contained more than 300 rhizobia g?1 soil capable of forming nodules on siratro (Macroptilium atropurpureum). Several of these soils had never been planted to groundnut. A correlation matrix indicated no relationship was present between soil rhizobial populations and any of the measured soil properties, or between soil rhizobial populations and the time since groundnuts were last planted in the rotation. Individual isolates of Rhizobium from six legumes: groundnut (Arachis hypogaea), mung bean (Vigna radiata), lubia (Dolichos lablab), cowpea (Vigna unguiculata), pigeonpea (Cajanus cajan) and bambara groundnut (Voandzeia subterranea) were obtained from four locations in Sudan. All isolates were able to nodulate each of the six legumes when grown in sterile vermiculite. The isolates grew in 0.1% NaCl-amended media, but growth was variable in 2.0% amended media. Most isolates grew after exposure to moist heat for 15 min at 50°C. Optimum pH for growth was, in general, between pH 6 and 8. Agglutination reactions indicated isolates from groundnuts, as well as isolates from other legumes, belonged to several serological groupings. Some isolates formed a large number of nodules on a Sudanese groundnut cultivar, whereas other isolates formed only few nodules.  相似文献   

10.
The diversity of 110 rhizobial strains isolated from Acacia abyssinica, A. seyal, A. tortilis, Faidherbia albida, Sesbania sesban, Phaseolus vulgaris, and Vigna unguiculata grown in soils across diverse agro-ecological zones in southern Ethiopia was assessed using the Biolog™ system and amplified fragment length polymorphism (AFLP) fingerprinting technique. By cluster analysis of the metabolic and genomic fingerprints, the test strains were grouped into 13 Biolog and 11 AFLP clusters. Twenty-two strains in the Biolog method and 15 strains in the AFLP analysis were linked to eight and four reference species, respectively, out of the 28 included in the study. Most of the test strains (more than 80% of 110) were not related to any of the reference species by both methods. Forty-six test strains (42% of 110) were grouped into seven corresponding Biolog and AFLP clusters, suggesting that these groups represented the same strains, or in some cases clonal descendants of the same organisms. In contrast to the strains from S. sesban, isolates from Acacia spp. were represented in several Biolog and AFLP clusters indicating the promiscuous nature of the latter and widespread occurrence of compatible rhizobia in most of the soil sampling locations. The results showed that indigenous rhizobia nodulating native woody species in Ethiopian soils constituted metabolically and genomically diverse groups that are not linked to reference species.  相似文献   

11.
Polyphasic characterization of 54 indigenous mung bean (Vigna radiata L.) rhizobia from different geographic regions of China was determined by analyzing the variability of 16S rRNA gene RFLP, 16S–23S rRNA gene Intergenetic Spacer (IGS) RFLP, G-C rich RAPD and phenotype assays. Based on these characteristics, mung bean rhizobia were clustered into four groups. Group I comprised 16 slow-growing isolates from a variety of geographic regions. This group was genetically distinct from Bradyrhizobium japonicum and Bradyrhizobium liaoningense, and may represent a new species. Group II was composed of 18 isolates, which could be sub-divided into two sub-groups that were respectively related to B. japonicum and B. liaoningense. Group III comprised 12 isolates from South China and clustered together with Bradyrhizobium elkanii. Group IV formed a miscellany of 8 fast-growing isolates variously related to the genera Sinorhizobium, Rhizobium and Mesorhizobium.  相似文献   

12.
Global conventions on biological diversity force governments to develop region-wide conservation strategies. Such strategies are difficult to design for all taxa because little is known about the important spatial scales. Here we applied additive partitioning of the diversity of saproxylic beetles in Bavarian forests in Southern Germany using a nested hierarchical design of five increasingly broader spatial levels: trap, strata, forest stand, forest site, and ecoregion. We consistently found a significantly higher percentage than expected by chance of between ecoregion diversity and significantly lower α diversity within traps. A significant proportion of β diversity was also found between stands. Analysis of species represented by <0.005% of all specimens in our samples and of species classified as threatened revealed similar results. Critical spatial scales for threatened species encompassed the critical levels of common species. Within habitat substratum guilds, the proportion of β diversity increased from species associated with fresh wood to those associated with rotten wood to those associated with fungi. Our results suggest that the most effective way to ensure saproxylic beetle diversity in a state-wide strategy is to add new conservation sites within different ecoregions and to establish new conservation areas in additional forest stands, rather than to enlarge reserves. Our findings further suggest that monitoring of saproxylic beetle diversity on a broader scale in European temperate forests can be restricted to “monitoring species”, i.e. a subgroup of families easy to identify, and that canopy sampling can be neglected without a substantial loss of information.  相似文献   

13.
Chickpea (Cicer arietinum L.) nodulation variants of two cultivars ICC 4948 and ICC 5003 were used as trap plants to isolate 385 native rhizobia from CCS Haryana Agricultural University, Hisar farm soil. After authentication and considering growth characteristics, selected 110 rhizobia revealed immense molecular diversity using the profiles of DNA fragments generated by Polymerase chain reaction (PCR) with enterobacterial repetitive intergeneric consensus (ERIC) sequences. Low nodulating variants of cvs ICC 4948 and ICC 5003 were able to trap more numbers of rhizobial genotypes, namely seven as compared four to five by high nodulating variants of these cultivars. Overall eight rhizobial genotypes were trapped by the chickpea cultivars. Rhizobial isolates from same nodule or same plants were present in the same or different clusters and few isolates showed 100% similarity also. Based on nodules from a plant, nodulation variant or cultivar, rhizobia could not be differentiated and no exclusive cluster was formed by either rhizobial isolates from low or high nodulating variants of both the cultivars. Two most efficient rhizobial isolates LN 707b and LN 7007 were characterized by amplification and sequencing of 16S rRNA gene. Rhizobial isolate LN 707b showed more than 98% similarity with Mesorhizobium sp SH 2851 and Mesorhizobium mediterraneum. Another isolate LN 7007 showed more than 99% similarity with the sequence of 16S r RNA gene of Mesorhizobium sp STM 398, and M. mediterraneum. So the chickpea rhizobia from Northern Indian subcontinent are proposed to be kept under M. mediterraneum strain LN707b and LN 7007.  相似文献   

14.
《Applied soil ecology》2011,47(3):464-469
Bacteria with the ability to solubilize phosphorus (P) and to improve plant health were selected and tested for growth and survival in P-rich animal bone charcoal (ABC). ABC is suggested to be suitable as a carrier for biocontrol agents, offering them a protected niche as well as delivering phosphate to plants, meanwhile re-using P from waste of the food chain. Ninety-seven bacterial isolates from different soils were tested for their potential to dissolve P from ABC. Of these isolates, 60% showed positive scores; they belonged to the genera Arthrobacter, Bacillus, Burkholderia, Collimonas, Paenibacillus, Pseudomonas, Serratia, and Streptomyces. Twelve isolates from different taxonomic groups were selected for further research on growth ability and survival in ABC, and on their potential to control plant pathogens. The highest concentrations of P were dissolved by Pseudomonas chlororaphis and Bacillus pumilus, followed by Paenibacillus polymyxa, Burkholderia pyrrocinia and three Streptomyces isolates. P. chlororaphis and P. polymyxa showed strongest growth inhibition of plant pathogenic Pythium and Fusarium sp., followed by the Streptomyces spp. isolates.  相似文献   

15.
In order to assess the diversity of culturable Burkholderia populations in rhizosphere and bulk soil and to evaluate how different agricultural management regimes and land use history affect this diversity, four treatments were evaluated: permanent grassland; grassland converted into maize monoculture; arable land and arable land converted into grassland. Burkholderia isolates obtained on PCAT medium were grouped in 47 clusters using 16S ribosomal RNA gene based PCR-DGGE combined with BOX genomic fingerprinting (DGGE-BOX). The distribution of the isolates in the DGGE-BOX clusters was used to calculate the Shannon diversity index per treatment. Interestingly, we observed that the Burkholderia diversity was affected by changes in the agricultural management, since the highest diversity was observed in permanent grassland and in continuous arable land. In addition, the diversity tended to be higher in the rhizosphere than in the corresponding bulk soil. The use of species abundance models indicated that rhizosphere communities had more even distributions than communities collected from the bulk soil. Identification of isolates revealed that only 2% of these belonged to the B. cepacia complex and that the majority was assigned to either (1) new Burkholderia species or (2) Burkholderia species that had originally been isolated from soil. Isolates classified as B. hospita, B. caledonica and Burkholderia sp. ‘LMG 22934’ and ‘LMG 22936’ were found mainly in the arable land, while isolates belonging to Burkholderia sp. ‘LMG 22929’ and B. phytofirmans were associated with the grassland area. Another potentially new Burkholderia species, ‘LMG 22932’, was found in both areas, in close association with the maize rhizosphere.  相似文献   

16.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

17.
18.
Rooibos (Aspalathus linearis) has been reported to be nodulated by rhizobia belonging to members of the genus Bradyrhizobium but based solely on slow growth rate on growth media in vitro. Because there is very little information about the rhizobia that nodulate and fix nitrogen in rooibos, the characterization of rhizobial strains and their ability to nodulate A. linearis was investigated in this study. Soils intially collected from the rhizosphere of different Aspalathus populations were used in a baiting experiment to trap rhizobia by rooibos roots. The rhizobia trapped in the nodules were re-isolated and used in Koch’s postulate experiment using the Leonard jar assembly in the glasshouse. The strains that formed on the average between five and 12 indeterminate pink nodules per plant resulted in statistically significant (P = 0.05) increase in shoot and root dry weights. Phylogenetic analysis of the 16S ribosomal RNA sequence of the isolates from the root nodules revealed for the first time that A. linearis is nodulated by different groups of rhizobia belonging to members of both the α-Proteobacteria and the β-Proteobacteria. It was also found that only 2% of the total rhizobia isolated from the root nodules of rooibos were represented by the genus Bradyrhizobium. The finding that rooibos is nodulated by different groups of α-rhizobia and β-rhizobia provides valuable information both in the study of the microbial ecology of rooibos and in the selection of highly efficient nitrogen fixing strains for the commercial cultivation of this indigenous legume.  相似文献   

19.
《Applied soil ecology》2000,14(1):27-36
The nematode communities of 36 grassland ecosystems in Romania, belonging to different plant associations and soil types, were studied. The abundance of nematodes, the species and trophic types present, as well as their distribution in relation to plant community and soil characteristics are analyzed and discussed.The abundance of nematodes from the 36 grasslands studied ranged between 0.41 × 106 and 8.57 × 106 individuals/m2, and a total of 121 genera and 145 species of nematodes were found. The highest diversity was found in grasslands developed on brown earth soil (65–67 genera and 74–76 species), with least diversity in those evolving on podzol and lithosol (33–36 genera with 25–28 identified species). Most of the dominant taxa were found in specific soil layers; some obligate plant parasitic genera (e.g., Paratylenchus, Rotylenchus, Criconema) showed preference for deeper soil layers. The nematode diversity index (H′), with values ranging between 2.38 and 3.47, did not differ significantly between the different types of grasslands. Plant feeding, bacterial feeding, hyphal feeding and omnivorous nematodes were the main groups in mountainous grasslands developed on different soil types. Plant feeding and bacterial feeding nematodes dominated the trophic structure and more plant feeders (62–69%) were found in communities of subalpine and alpine grasslands developed on podzol and alpine meadow soil, than in those developed on rendzina and lithosol (27–33%). The ratio of hyphal feeding to bacterial feeding nematodes (Hf/Bf) is constantly in favour of the bacterial feeding group, the values being an indicator of good soil fertility for most studied grasslands. The nematode communities of grasslands are grouped into six main clusters according to their genera affinity and distinguished by different grassland and soil types. Communities from subalpine grasslands developed on rendzina, acid brown and lithosol have the greatest similarities. An ordination of nematode communities in relation to important environmental variables is presented. Environmental variables relevant in explaining the patterns of nematode composition in grasslands, using canonical correspondence analysis (CCA), are: humus, pH, total nitrogen, exchangeable bases and soil type. No single factor could be selected.  相似文献   

20.
This study was initiated to isolate, characterize and select symbiotically effective rhizobia nodulating lentil (Lens culinaris medic) and to enumerate indigenous rhizobia nodulating lentil in some Ethiopian soils. More than 84 nodule and soil samples were collected. In sand culture, only 62 isolates were authenticated as rhizobia nodulating lentil. Analyses of variance indicated that most of the parameters measured were significantly (p < 0.05) improved by inoculation, with the exception of root length. Inoculation increased shoot length, shoot dry weight and plant total nitrogen by 82.3, 196 and 452%, respectively, over negative control (without inoculation and N fertilization). The tested isolates were found to be very effective (20.9%) and effective (77.4%), with only one ineffective isolate. Indigenous rhizobia in the investigated soils ranged from 30 to 5.8 × 103 cell g?1 dry soil. A pot experiment with selected rhizobia and nitrogen fertilizer on Chefedonsa and Debrezeit soils did not show any significant difference in shoot dry weight at p < 0.05. From the study, it was observed that most Ethiopian soils were inhabited by a moderate to high number of indigenous rhizobia and rhizobia inoculation did not improve lentil productivity in the investigated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号