首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
农业土壤N2O排放的研究进展   总被引:10,自引:0,他引:10  
根据近几年国内外文献资料,综合分析介绍了农业土壤N2O排放的进展情况,提出农业土壤中N2O的产生是在微生物的参与下,通过硝化和反硝化作用完成。影响N2O产生与排放的主要因素包括土壤特性(理化性质和水热条件)、气候条件(温度、降水、光照)和农业技术措施(肥水管理、作物类型)。深入研究农业土壤N2O排放与这些因素间的数量关系,客观估计区域或全球农业土壤N2O的排放总量并提出切实可行的减排措施乃是未来的研究方向。  相似文献   

2.
丘陵区稻田N2O排放的特点   总被引:3,自引:1,他引:3  
1993-1994年在中国科学院红壤生态试验站通过田间试验研究了丘陵区稻田N2O排放的特点。结果表明,稻田N2O排放主要集中在水分落干期间,淹水状态下几乎没有N2O排放。由于早稻稻草还田、晚稻稻田N2O排放量即使在水分离落干期间也不高。稻田N2O排放量随地形降低而逐渐增加,1993-1994年两年中坡底、坡腰和坡顶稻田水稻生长期平均N2O-N排放通量分别为10.90、5.60和2.11μg/(m^  相似文献   

3.
农田是温室气体氧化亚氮(N2O)的重要排放源,位于东北地区的黑土地是我国重要的粮食生产基地。目前我国农田N2O排放增速正在放缓,但是东北黑土区仍在加快。针对我国东北黑土区的自身特点和N2O排放研究现状,本文综合分析了黑土N2O排放特征、产生过程与影响因素。结果表明,东北农田黑土N2O-N背景排放量平均为0.56±0.29 kg·hm?2,施用化肥黑土N2O-N平均排放量为1.49±1.09 kg·hm?2,化肥氮诱导的N2O排放系数(EF)为0.45%±0.42%。与中国旱地和世界其他黑土区相比,东北农田黑土的背景排放量和EF均处于较低水平。这是因为在正常降雨条件下,东北黑土N2O主要是由硝化作用产生,反硝化作用受到活性碳缺乏的限制。冻融过程则可能促进反硝化作用进行,诱导春融期N2O出现爆发式排放。与我国其他农田相比,东北黑土N2O排放研究明显不足,今后应加强对不同区域黑土N2O排放的原位观测,阐明冻融过程N2O的产生机制,评估黑土N2O排放对气候变化的响应;同时应加强研究秸秆还田、有机肥施用等措施对N2O排放的影响效应,从而制定出黑土地质量提升和N2O减排的双赢措施。  相似文献   

4.
以三江平原沼泽湿地不同开垦年限(1987年、1993年开垦)的旱田(种植方式为大豆-冬闲)为研究对象,探讨了种植年限,降雨、土壤湿度以及植物参与对旱田N2O排放的影响。结果表明,种植年限越长,N2O排放量越高,1987年开垦的旱田N2O排放量显著高于1993年开垦的,这与土壤的理化性质有关;土壤有机碳和总氮含量随种植年限的增加而逐渐降低,而δ^15N随种植年限呈线性升高。在大豆生长季内,两种种植年限的旱田N2O通量具有相同的季节变化趋势,而降水条件是控制这一变化趋势的主要因素,N2O排放通量与观测日前6天的加权平均降水量呈线性正相关,与土壤体积含水量呈多项式正相关。另外,植物的参与降低了旱田土壤N2O的排放。  相似文献   

5.
土壤N2O和NO产生机制研究进展   总被引:12,自引:0,他引:12  
蔡延江  丁维新  项剑 《土壤》2012,44(5):712-718
N2O和NO是大气中两种重要的活性氮气体,强烈影响着全球变化和生态环境。土壤是N2O和NO的重要排放源,生物和非生物途径均可产生N2O和NO。本文详细论述了自养硝化、异养硝化、生物反硝化、化学反硝化、硝化细菌反硝化和硝态氮异化还原成铵作用产生N2O和(或)NO的机制,并对研究中存在的一些问题进行了探讨。  相似文献   

6.
肥料施用是影响稻田N20排放的重要因素之一。以国内外相关文献为基础,综述了肥料的种类、施用量、施用方式和施用时间对稻田N2O排放的影响,指出了有待研究的内容:加强对土壤N2O排放机理的研究;进一步研究肥料施用对稻田N2O排放的影响;进一步研究施肥管理措施对稻田温室气体(CH4和N2O)排放的交互影响,寻求科学合理、切实可行的减排措施。  相似文献   

7.
保护地土壤N2O排放通量特征研究   总被引:4,自引:1,他引:3  
为研究保护地土壤N2O排放通量特征,于2009年8~12月,在河北辛集不施氮(N0)、当地习惯施氮(N900)及减量施氮(N675)处理下的秋冬季番茄保护地土壤上使用静态箱采集、气相色谱仪检测的方法测定了土壤N2O排放通量。得到以下研究结果:灌溉施肥后,各处理N2O平均排放通量与表层土壤硝态氮含量呈极显著正相关关系。灌溉施肥后7 d内是施氮处理土壤N2O主要排放期,其排放量占当季总排放量的55.9%~59.8%;高峰值一般出现在第3~5 d,此时的土壤含水量对硝化、反硝化作用都较适宜。8~10月份由于温度较高,N2O排放通量明显高于较冷的11~12月。8~10月份施氮是影响保护地土壤N2O排放的主导因素,减少施氮量显著降低了N2O排放量;之后温度是主导因素,此时N2O排放量受追施氮量的影响较小。经估算,保护地秋冬季番茄不同施氮处理N2O总排放量的大小顺序为:N900(N 5.304 kg/hm2)N675(N 3.616 kg/hm2) N0(N 0.563 kg/hm2),差异显著,减量施氮比习惯施氮处理降低了31.8%的N2O排放量;N675和N900处理的N2O排放系数分别为0.45和0.53。  相似文献   

8.
不同种植年限旱田N2O排放研究   总被引:1,自引:0,他引:1  
以三江平原沼泽湿地不同开垦年限(1987年、1993年开垦)的旱田(种植方式为大豆-冬闲)为研究对象,探讨了种植年限、降雨、土壤湿度以及植物参与对旱田N2O排放的影响。结果表明,种植年限越长,N2O排放量越高,1987年开垦的旱田N2O排放量显著高于1993年开垦的,这与土壤的理化性质有关;土壤有机碳和总氮含量随种植年限的增加而逐渐降低,而1δ5N随种植年限呈线性升高。在大豆生长季内,两种种植年限的旱田N2O通量具有相同的季节变化趋势,而降水条件是控制这一变化趋势的主要因素,N2O排放通量与观测日前6天的加权平均降水量呈线性正相关,与土壤体积含水量呈多项式正相关。另外,植物的参与降低了旱田土壤N2O的排放。  相似文献   

9.
农田土壤N2O排放的影响因素   总被引:14,自引:0,他引:14  
氧化亚氮是大气湿室效应气体之一。本文概括论述影响农田土壤N2O排放的氧气、温度、土壤湿度和水分、有机质、土壤pH、微生物、土壤质地以及施肥等因素。  相似文献   

10.
N2O,CO2温室气体与土壤DNDC模型   总被引:1,自引:0,他引:1  
本文对N2O,CO2两种温室气体的工作进行了评述,重点介绍了土壤脱氮-分解模型的起始原由,发展过程及其结构,并通过对模型在不同国家和地区的灵敏度检验。表明与实测结果非常吻合,得出了非常重要的结论,这一模型不仅对N2O,CO2等温室气体的全球研究有重要意义,面对对土壤农业耕作实践也有指导作用,但这些结论有待于进一步的详细研究。  相似文献   

11.
菜地土壤CO2与N2O排放特征及其规律   总被引:2,自引:0,他引:2  
为了解不同集约化类型菜地土壤CO2和N2O排放特征及影响因子,选取京郊20年露地老菜地(OV20)、3年菜地种植历史的露地新菜地(OV3)、3年大棚菜地(GV3),以及相邻的当地典型粮田玉米地(Maize)4个类型地块,研究了春黄瓜生育期间土壤CO2和N2O排放特征及影响因子。结果表明:1)春黄瓜生育期间的土壤CO2排放通量主要受土壤5 cm处温度(指数关系)和土壤水分(对数关系或二次抛物线关系)影响;期间玉米地土壤CO2平均排放通量为(346.8±56.5)mg.m-2.h-1,20年露地菜地、3年露地菜地有机肥处理、3年露地菜地配施处理、3年大棚菜地的土壤CO2平均排放通量分别是玉米地的1.38、1.21、1.39和1.56倍。2)土壤N2O排放通量与施肥活动密切相关,排放高峰都出现在氮肥施用后,并受土壤温度和水分的影响。基肥后土壤温度低(15~20℃),排放峰出现在第5 d,排放峰持续时间(长达20 d)与施肥量相关;追肥后土壤温度高(>20℃),排放高峰发生早(追肥后第3 d),但因追肥用量低,因此持续时间短(仅一周)。3)黄瓜生长期内玉米地N2O累积排放量为N(1.95±0.10)kg.hm-2,20年老菜地、3年大棚菜地和3年新菜地N2O累积排放量分别是同期大田玉米地的1.67、1.95和1.99倍。4)本实验中春黄瓜生长季菜地土壤化肥氮N2O排放系数在1.86%~4.71%之间,显著高于IPCC旱地排放缺省值1%。其中,新菜地排放系数高于老菜地,设施菜地排放系数高于露地菜地;但有机肥氮的N2O排放系数则远远低于化肥氮的排放系数,仅为0.11%。  相似文献   

12.
氧化亚氮(N2O)和氮气(N2)是淹水稻田土壤剖面反硝化过程的重要气态产物,可通过土水界面向大气排放,也可随水向下淋溶。秸秆生物质炭施入稻田后会改变土壤理化及微生物学性质,影响反硝化过程及N2O和N2产排。本研究依托2010年夏建立的连续秸秆生物质炭还田的稻麦轮作农田试验,通过埋设淋溶管收集土壤剖面溶液,采用气相色谱和膜进样质谱分别定量溶液中N2O和exN2(反硝化产生N2量),观测了2018和2019年水稻季不同秸秆生物质炭施用量(CK:每季0 t·hm-2;1BC:每季2.25 t·hm-2;5BC:每季11.3 t·hm-2;10BC:每季22.5 t·hm-2)下0~1 m土壤剖面溶液中N2O和exN2浓度的时空变化,评估了长期施用秸秆生物质炭对稻田土壤剖面反硝化作用及其主要气态氮产物exN2随水流失的影响。结果表明,两个稻季CK处理N2O浓度以60 cm处较高,exN2浓度则随土壤深度增加呈降低趋势。秸秆生物质炭处理能降低剖面N2O和exN2浓度,以10BC处理最为明显。其中,N2O浓度降低以60 cm处较大,exN2浓度降低随土壤深度增加而加大。施用秸秆生物质炭对土壤剖面溶液无机氮(NO3-+NH4+)含量无明显影响,但5BC和10BC处理增加了可溶性有机碳(DOC)和溶解氧(DO)浓度以及氧化还原电位(Eh)。CK处理下土壤剖面溶液N2O和exN2浓度变化与DOC、硝态氮(NO3-)及DO有关;秸秆生物质炭处理下则主要受DO和Eh控制。exN2淋溶量(按1 m深度计算)CK处理下为2.3 ~5.5 kg·hm-2,相当于无机氮和有机氮(DON)淋溶量的32%~34%,5BC和10BC处理则降低为1.7 ~3.7 kg·hm-2和1.1~1.9 kg·hm-2,上述结果表明,反硝化产生N2随水淋溶量不容忽视,秸秆生物质炭还田可改善淹水稻田土壤剖面的通气状况,增加DO,提高Eh,进而有效减少深层反硝化及其主要气态产物exN2随水流失的风险。  相似文献   

13.
从2000年9月到2001年9月,每月两次采样连续监测太湖地区湖、河和井水水体中溶解的N2O浓度、NO3^--N和NH4^ -N浓度及水温的变化,研究了湖、河、井水体NO3^--N和NH4^ -N浓度对水中溶解N2O浓度的影响。结果表明,湖、河和井水中溶解的N2O浓度与NO3^--N浓度呈显著正相关关系,也与水温呈正相关,而与NH4^ -N浓度无显著相关关系。结果还表明,浅水型水体高浓度NO3^--N和NH4^ -N的存在均是N2O产生的源;水体反硝化作用和硝化-反硝化均是水中产生N2O的重要途径。  相似文献   

14.
地膜覆盖对土壤中N2O释放的影响   总被引:3,自引:0,他引:3  
研究地膜覆盖下土壤中N2O释放可为进一步探明膜下土壤中N2O的传输、消耗和排放到大气的动力学过程提供理论依据.在2001年3月至6月和2001年10月至2002年6月连续两个冬小麦生长季,采用静态漏斗法和揭膜-封闭箱法测定了地膜覆盖下耕层5、10、20 cm土层处和地表处N2O的释放特征及相应土壤性质.结果表明:地膜覆盖下,地表和耕层10、20 cm土层处N2O释放通量显著增加;0~5 cm土层土壤水分和10~20 cm土层土壤硝态氮的浓度的变化分别解释了休闲地和冬小麦地土壤中N2O释放通量85.23%和92.11%的变异,它们是膜下休闲地和冬小麦地土壤中N2O释放通量增加的主要原因.该结论对地膜覆盖下科学地控制农田水分、养分以及地膜覆盖在中国西北地区的科学使用和推行具有实际意义.  相似文献   

15.
土壤质地对小麦和棉花田N2O排放的影响   总被引:25,自引:1,他引:25  
1994年-1995年在中国科学院封丘生态试验站通过小区试验研究了土壤质地对小麦和棉花田N2O排放量的影响。结果表明,土壤质地明显影响小麦和棉花田N2O排放量,壤质土壤排放的N2O高于砂质和粘质土壤,小麦和棉花生长期壤质,砂质及粘质土壤的平均N2O排放通量分别为37.93,23.81,12.90及70.39,45.87,27.85μgN2O-N/(m^2.h)。  相似文献   

16.
天然湿地是介于陆地生态系统和水生生态系统之间的过渡地带,具有区别于单一水体生态系统或陆地生态系统的特征,是大气中N2O重要排放源。当前关于天然湿地N2O排放研究主要集中在N2O的空间与时间排放规律、环境因子对N2O的空间和时间排放规律的影响和具体天然湿地是N2O的“源”或“汇”等问题,然而在宏观尺度上,对不同区域天然湿...  相似文献   

17.
加气灌溉温室番茄地土壤N2O排放特征   总被引:1,自引:3,他引:1  
加气灌溉引起的土壤中氧气含量改变势必会影响N_2O的产生和排放。为了揭示加气灌溉对秋冬茬温室番茄地土壤N_2O排放的影响,2014年采用静态箱-气相色谱法对加气灌溉土壤N_2O排放进行原位观测,研究秋冬茬温室番茄地土壤N_2O排放对加气灌溉的动态响应。试验采用灌水量(充分灌溉、亏缺灌溉)和加气(加气、不加气)的双因素设计,设置4个处理,分别为加气亏缺灌溉(A1)、不加气亏缺灌溉(CK1)、加气充分灌溉(A2)和不加气充分灌溉(CK2)。结果表明:不同加气灌溉模式下土壤N_2O排放均主要集中在番茄果实膨大期,其他时期排放水平较低。加气和充分供水处理均增加了番茄整个生育期的土壤N_2O排放量,以A2处理最大(120.34 mg/m2),分别是A1和CK1处理的1.89和4.21倍(P0.01),而与CK2处理差异性不显著(P=0.078)。此外,不同灌水水平不加气处理,除N_2O排放主峰值点外,N_2O排放通量与土壤充水孔隙率(water-filled pore space,WFPS)存在指数正相关关系(P0.05),WFPS在46.0%~52.1%时观测到N_2O剧烈释放。可见,加气灌溉增加了温室番茄地土壤N_2O排放,且在亏缺灌溉条件下,加气灌溉对温室番茄地土壤N_2O排放的影响显著。研究结果为评估加气灌溉技术的农田生态效应及设施菜地温室气体减排提供参考。  相似文献   

18.
农田土壤N2O排放和减排措施的研究进展   总被引:6,自引:0,他引:6  
氧化亚氮(N2O)是一种受人类活动影响的重要温室气体。农业土壤是其主要的排放源之一,土壤中硝化和反硝化作用是N2O产生的主要过程。N2O的排放受多种因素的影响,农业活动尤其是施用化学氮肥是农田N2O排放量增加的主要因素。提高氮肥利用率,使用硝化抑制剂等措施将有助于减少N2O的排放量,更有效的减排措施还有待进一步的研究与应用。  相似文献   

19.
温度对旱田土壤N2O排放的影响研究   总被引:9,自引:0,他引:9  
以南方亚热带代表性旱田土壤—贵州玉米 -油菜轮作田、大豆 -冬小麦轮作田和休耕地为研究对象 ,同步观测了整个轮作期土壤N2 O排放通量和温度的季节变化。同时 ,采用DNDC模型定量探讨了未来气温变化对土壤N2 O排放的潜在影响。结果表明 ,温度是土壤N2 O排放通量规律性日变化的最主要控制因素 ;除大豆地外 ,其他作物生长季节和休耕地的N2 O排放通量季节变化与温度之间均存在一定程度的正相关性 ,其中冬春季休耕地的N2 O排放通量与温度间存在弱指数函数关系。模型检验结果表明 ,除大豆地外 ,其余试验地的N2 O排放通量均随年均气温升高而升高 ,在冬春季 ,土壤N2 O排放通量对气温变化的敏感性强于夏秋季 ,尤其以冬春季休耕地受气温变化的影响最为显著。  相似文献   

20.
土壤温度对北京旱地农田N2O排放的影响   总被引:20,自引:3,他引:20  
在作物生长期内,通过田间自动采样系统的测定和室内温湿模拟实验,对北京地区麦豆轮作生态系统的N2O排放进行了初步研究。结果表明:在10~30℃范围内,随着土壤表层温度的升高,麦豆轮作生态系统的N2O排放通量在不同程度上有一定的增加,但不呈明显的线性相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号