首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
胡靖  何贵勇  闫俊  陈晗  尹鑫  李兰平  杜国祯 《土壤学报》2016,53(6):1506-1516
不同强度、季节的放牧是草地生态系统中主要的放牧管理措施,在生物多样性维持以及生态过程发挥中起着重要的作用,然而,关于青藏高原东缘高寒草甸地区放牧对土壤线虫群落的研究甚少。本文调查了放牧(轻度、中度和重度)对植物群落、土壤理化性质和线虫群落的影响。结果表明:植物群落、土壤理化性质和线虫群落受到放牧、时间以及放牧和时间共同作用的影响;食细菌线虫、植物凋落物生物量、根生物量、土壤含水量、土壤有机碳含量在轻度放牧草地内最高(p<0.05);杂类草生物量在中度放牧草地内最高;杂食线虫数量在重度放牧地内最低(p<0.05)。植物群落和土壤特性与土壤线虫群落有明显的相关关系(p<0.05)。结构方程模型显示食草动物主要通过植物群落影响植食和食细菌线虫,进一步的研究应针对植物群落多样性以及个体特征对线虫群落的影响。  相似文献   

2.
旱地红壤线虫群落对不同耕作年限的响应及指示意义   总被引:1,自引:1,他引:1  
我国热带和亚热带地区的红壤农田肥力水平低,严重制约着农业生产力的提升。不同农业管理措施会对土壤理化性质和生物群落产生不同的影响。本文研究了不同耕作年限条件下的旱地土壤,选取耕作10 a、20 a、50 a的花生地和菜地,并以未开垦的原始荒地作为对照。结果显示,与荒地相比,各年限花生地的土壤肥力等指标表现出下降的趋势,菜地土壤的各项性质则呈现提升的趋势。耕作20 a的花生地土壤有机碳、全氮、微生物生物量碳、有效磷等指标均最低,同时耕作50 a的菜地各项性质相对于10 a有显著的提升(p0.05)。花生地中植食性线虫比例伴随耕作年限延长而下降,而菜地中食细菌线虫比例伴随耕作年限延长而逐渐上升。从线虫生态指标数据显示,花生地相对于频繁施肥和耕作的菜地表现出更为稳定的土壤食物网。因此,线虫群落对不同耕作年限下旱地红壤生态系统的变化表现出一定的指示潜力。  相似文献   

3.
藏北高寒草甸植物群落对土壤线虫群落的影响   总被引:3,自引:0,他引:3  
薛会英  胡锋  罗大庆 《土壤学报》2013,50(3):507-516
2011年5月—11月,对西藏北部高寒草甸3种典型植物群落下0~30 cm范围内不同深度土层的土壤线虫群落进行调查,浅盆法收集土壤线虫,应用个体密度、多样性指数等特征值来分析高寒环境下土壤线虫群落的组成、分布特征与多样性。调查共分离得到33 038条土壤线虫,隶属于2纲6目51科93属;线虫个体密度平均为847条100 g-1干土;表聚性明显。研究结果表明,不同植物群落间的土壤线虫群落组成存在一定差异,土壤线虫数量的大小顺序为委陵菜植物群落<藏北嵩草植物群落<高山嵩草植物群落,土壤线虫数量差异显著(p<0.05);土壤线虫数量随生长季变化发生明显波动,返青期最多,盛长期次之,枯草期最低;不同植物群落的优势属种类不同。生物多样性为委陵菜植物群落>高山嵩草植物群落>藏北嵩草植物群落,这可能是放牧干扰强度不同,以及植物群落影响下的土壤性质分异所导致的结果。总之,不同植物群落下土壤线虫群落特征的分异初步显示出线虫指示环境因子影响土壤生态系统的潜力。  相似文献   

4.
Soil food webs influence organic matter mineralization and plant nutrient availability, but the potential for plants to capitalize on these processes by altering soil food webs has received little attention. We compared soil food webs beneath C3- and C4-grass plantings by measuring bacterial and fungal biomass and protozoan and nematode abundance repeatedly over 2 years. We tested published expectations that C3 detritus and root chemistry (low lignin/N) favor bacterial-based food webs and root-feeding nematodes, whereas C4 detritus (high lignin/N) and greater production favor fungal decomposers and predatory nematodes. We also hypothesized that seasonal differences in plant growth between the two grassland types would generate season-specific differences in soil food webs. In contrast to our expectations, bacterial biomass and ciliate abundance were greater beneath C4 grasses, and we found no differences in fungi, amoebae, flagellates, or nematodes. Soil food webs varied significantly among sample dates, but differences were unrelated to aboveground plant growth. Our findings, in combination with previous work, suggest that preexisting soil properties moderate the effect of plant inputs on soil food webs. We hypothesize that high levels of soil organic matter provide a stable environment and energy source for soil organisms and thus buffer soil food webs from short-term dynamics of plant communities.  相似文献   

5.
Marine inputs from seabirds (in the form of guano) to terrestrial coastal communities play an important role in supporting aboveground food webs. However, little is known about the importance of seabird-derived nutrient inputs for belowground food webs and their function relative to other factors that regulate belowground communities. Here, we tested the relative importance of nutrient enrichment from seabirds and grazing, a known driver of belowground properties, in determining the structure and function of the soil food web in an island system. This was tested by measuring the size and composition of the microbial community, the abundance of nematode feeding groups and rates of decomposition and net nitrogen (N) mineralisation in soil samples collected from grazed and ungrazed plots at coastal and inland locations, representing sites of high and low seabird influence respectively, on the Isle of May in the Firth of Forth, east Scotland. We found that proximity to seabird breeding colonies, and associated greater input of seabird-derived N, stimulated the size of the soil microbial biomass and the abundance of bacteria relative to fungi in the soil microbial community relative to inland areas that received significantly less N. Despite this, proximity to seabird colonies had no detectable effect on rates of decomposition or N-mineralisation. The short-term removal of mammalian grazers, in the form of rabbits, had only limited effects on the structure of the soil food web, mainly affecting the abundance of bactivorous nematodes which were greater in grazed than ungrazed situations. However, cessation of grazing did impact significantly on rates of N-mineralisation and decomposition, which were higher and lower in grazed than ungrazed situations respectively. In conclusion, our study provides evidence that allochthonous nutrient inputs from seabirds have significant impacts on the composition of the soil microbial community, and that these effects outweigh short-term effects of grazers as a driver of soil food web structure in the island system studied. Overall, our results indicate the important roles that natural sources of N and grazing play as drivers of soil food webs and their function.  相似文献   

6.
茅苍术间作对连作花生土壤线虫群落的影响   总被引:1,自引:0,他引:1  
张亚楠  李孝刚  王兴祥 《土壤学报》2016,53(6):1497-1505
以连作10年花生的红壤为基质,分别设置花生单作和花生/茅苍术间作处理,于花生成熟期采集单作花生根际土壤、间作处理花生和茅苍术根际土壤,分析土壤线虫的数量、多样性和群落结构,以揭示茅苍术间作对土壤线虫群落的影响及对花生连作障碍的缓解机制。结果表明,与花生单作相比,间作处理花生的株高、主根长、秸秆干重和荚果干重显著增加(p0.05)。茅苍术间作减少了连作花生土壤线虫的总数,显著提高了花生根际土壤食细菌线虫、食真菌线虫和捕食/杂食线虫的相对丰度,降低了植物寄生线虫的相对丰度(p0.05)。与花生单作相比,间作提高了花生根际土壤线虫的Shannon-Wiener多样性指数(H′)和均匀度指数(J),而土壤线虫群落的优势度指数(λ)显著降低。间作处理花生根际土壤线虫的瓦斯乐斯卡指数(WI)和自由生活线虫成熟度指数(MI)显著升高,植物寄生线虫成熟度指数(PPI)显著降低,而线虫通道比(NCR)无显著变化。综合分析得出,茅苍术间作可以提高花生连作土壤线虫多样性、优化土壤线虫群落结构,进而增强有益线虫的生态功能、改善花生连作障碍。  相似文献   

7.
Gradients in stressed areas potentially provide a powerful tool to interpret relations between soil biodiversity and site quality. We measured soil chemistry, soil microbiology and nematodes along three transects representing a fertility gradient and at a disturbed site near a road in a Dracophyllum subulatum-dominated shrubland in which frosts are a major factor in preventing succession to forest; we used D. subulatum size as a site-quality index. Significant correlations between both shrub height and shrub growth rate and volumetric measures of total soil phosphorus and anaerobically mineralisable nitrogen indicate that nitrogen and phosphorus regulate plant growth. Microbial biomass and total nematode abundance significantly increased with greater plant growth, presumably in response to greater litter input. Conversely, neither heterotrophic microbial diversity nor nematode diversity was correlated with shrub performance along the transects. Litter was from a single species and thus likely similar in quality so changes in microbial or nematode diversity might not be expected. In this oligotrophic environment, nutrient levels were not only the important regulators of plant growth but also appeared to have an indirect influence on the size of the microbial and nematode populations.  相似文献   

8.
为研究施用过量的农用化学品对土壤线虫群落组成及多样性的影响,采用定点试验的方法,在哈尔滨市呼兰区选择典型农田生态系统进行试验,对比研究土壤线虫群落对施用过量的氮肥、磷肥、钾肥、除草剂及杀虫剂的响应。在试验田中共鉴定出土壤线虫27科45属,其中Cephalobus和Aphelenchus为优势属。施用不同浓度的各类农用化学品对土壤线虫群落组成、多样性均产生一定影响。线虫总数及食细菌线虫、食真菌线虫、植物寄生线虫数量在不同处理间均存在显著差异(P<0.05);其中,植物寄生线虫的相对丰度随化肥施用量的升高呈增加趋势。从土壤线虫的生态指数来看,除PPI(植物寄生线虫成熟指数)外,其他生态指数[MI(成熟度指数)、F/B(食真菌线虫与食细菌线虫数量比值)、Evenness(均匀度指数)、SR(丰富度指数)、H’(多样性指数)]在施用不同农用化学品处理之间也存在显著差异,并且,MI随着施用钾肥、氮肥浓度的增加而降低。土壤线虫可以作为揭示施用农用化学品过程中土壤质量变化的生物学指标,其群落及多样性的变化表明土壤线虫群落对农用化学品的过量施用产生了响应,过量施用农用化学品会增加土壤生态系统的干扰,对土壤环境造成威胁。  相似文献   

9.
Biological indicators based on abundances of soil organisms are powerful tools for inferring functional and diversity changes in soils affected by agricultural perturbations. Field plots, combining organic and conventional practices with no tillage, conservation tillage and standard tillage maintained different nematode assemblages and soil food webs. Soil food web indices based on nematode assemblages were reliable predictors of the trophic composition of functional characteristics of soil mite assemblages. Bacterial-feeding and predatory nematodes, together with predatory mites, were abundant in the organic-no till treatments and were associated with high values of the Enrichment and the Structure Index based on nematode assemblages. Conventional-Standard tillage treatments had high abundances of fungal- and plant-feeding nematodes and algivorous mites, associated with high values of the Basal and Channel Index. This study validates the hypothesis that nematode-based soil food web indices are useful indicators of other soil organisms such as mites, with similar functional roles and environmental sensitivities.  相似文献   

10.
To determine whether successional changes in plant communities may influence belowground community structure, we quantified nematode abundance, trophic structure and diversity along two separate chronosequences from heather moorland to birch woodland in the Scottish uplands. Tree invasion markedly altered plant community composition, and hence litter inputs, both directly, and indirectly through changes in understorey species. In turn, these changes in detrital inputs were reflected in consistent changes in nematode community structure. Nematode abundance increased from moorland to birch woodland, with moorland soils being dominated by a few taxa, notably root-hair and fungal feeders, compared to the more diverse composition of the birch woodland soils. Trophic structure was altered through an increase in the abundance of bacterial feeding relative to fungal-feeding nematodes, and an increase in the abundance of predatory nematodes. The increase in predators during the succession from moorland to woodland was associated with an increase in soil pH, highlighting that not only changes in the plant community, but also changes in soil properties associated with tree invasion may influence soil nematodes. Nematode diversity increased from moorland to birch woodland, with nematode richness being positively related to both plant species richness and soil pH. These results suggest that trees may control soil community structure through the manipulation of resources and the soil physico-chemical environment, promoting greater nematode diversity and trophic complexity.  相似文献   

11.
Plant-mediated effects of aboveground herbivory on the belowground ecosystem are well documented, but less attention has been paid to agro-ecosystems and in particular how crop cultivars with different traits (i.e. resistance to pests) shape such interactions. A fully factorial experiment was conducted using four rice cultivars with different insect-resistance, with and without the aboveground herbivore Nilaparvata lugens (brown planthopper), and to test two hypotheses (1) aboveground herbivory affects the soil microbial biomass and nematode community by altering plant performance and soil resource availability and (2) herbivory effects will depend on cultivar resistance traits. Our results suggested that cultivar resistance mediated both herbivory intensity and herbivore effects on plant performance. N. lugens decreased the availability of soil resources (soluble sugars, amino acids, organic acids, dissolved organic carbon and nitrogen), microbial biomass and percentages of bacterivores when feeding on a susceptible cultivar but increased them in a resistant cultivar. However, total nematode abundance and the percentage of plant-parasitic nematodes responded in the opposite way, increasing under a susceptible cultivar and decreasing under a resistant cultivar. The development of plant-parasites under resistant cultivars before aboveground herbivory might contribute to their resistance traits. Our findings provide evidence that N. lugens significantly reversed the pattern of soil resource availability, microbial biomass and nematode community structure (abundance and trophic composition) across cultivars with distinct resistance. In the presence of aboveground pests, the agronomic use of resistant rice cultivars could also control populations of plant-parasites and promote soil resource availability, further extended to higher trophic level of soil food web.  相似文献   

12.
[目的]覆盖作物影响果园土壤的微生物和线虫群落,研究不同覆盖作物对土壤微生物和线虫群落的影响特征可为生态果园管理提供理论依据.[方法]试验于2016年在湖北十堰的猕猴桃园内进行,供试品种为美味猕猴桃(Actinidia deliciosa),2015年定植.覆盖作物处理为白三叶草、鼠茅草,以清耕为对照(CK).连续进行...  相似文献   

13.
《Applied soil ecology》2007,35(3):582-598
No-tillage (NT) cropping systems develop distinct soil ecosystems characterized by a diverse soil fauna and slow fungal decomposition. However, nematode community analyses sometimes fail to detect these characteristics because the treatment before study or the sampling period is too short or the studies are not comprehensive. Different nematode taxa may occur depending on the geographic region and soil type, thereby affecting the usefulness of nematode analyses for soil biological assessment. However, studies in Asia are scarce. Thus, in this 2-year study, we compared nematode populations, community structures, and soil physicochemical properties between long-term NT and conventional tillage (CT) treatments combined with chemical (CF), organic (OF), or no (NF) fertilizer treatments in a Japanese soybean field. We then examined whether nematode diversity and community indices could detect differences among the treatments in the Japanese andosols. Although the effects of tillage on nematode densities were significant, the overall trend in NT–CT differences was not clear, except for omnivores and Meloidogyne. The effects of tillage on nematode diversity and community indices were apparent: diversity indices, maturity index (MI) and related indices, structure index, and channel index were higher, whereas enrichment index (EI) was lower in NT because of higher densities of K-strategy taxa, fungal and facultative root feeders, and lower densities of r-strategy bacterial feeders. Fertilizer treatments also affected nematode densities: most feeding groups were less abundant in NF and predatory nematodes were more abundant in OF than in other treatments. OF increased nematode diversity via an increase in microbivorous and predaceous nematodes. However, the effects of fertilizer on most community indices were not apparent. Interactions between tillage and fertilizer effects were significant for Pratylenchus and total nematode densities, MI, and EI. Among the soil properties differing among treatments, Ca and Mg content, cation exchange capacity, and percent total nitrogen affected nematode community structure. In conclusion, nematode community analyses using index calculations are useful for assessing soil biological properties under different tillage treatments in Japanese andosols, as well as in soil types in other countries. However, index calculations were less sensitive at detecting fertilizer treatment effects, probably because of simultaneous increases in r- and K-strategy nematodes and OF compost that was too decomposed. Other community analyses such as indicator species analysis or diversity evaluations should be used to detect fertilizer effects.  相似文献   

14.
Soil microorganisms are influenced by various abiotic and biotic factors at the field plot scale. Little is known, however, about the factors that determine soil microbial community functional diversity at a larger spatial scale. Here we conducted a regional scale study to assess the driving forces governing soil microbial community functional diversity in a temperate steppe of Hulunbeir, Inner Mongolia, northern China. Redundancy analysis and regression analysis were used to examine the relationships between soil microbial community properties and environmental variables. The results showed that the functional diversity of soil microbial communities was correlated with aboveground plant biomass, root biomass, soil water content and soil N: P ratio, suggesting that plant biomass, soil water availability and soil N availability were major determinants of soil microbial community functional diversity. Since plant biomass can indicate resource availability, which is mainly constrained by soil water availability and N availability in temperate steppes, we consider that soil microbial community functional diversity was mainly controlled by resource availability in temperate steppes at a regional scale.  相似文献   

15.
The aim of this paper was to assess biodiversity among different habitats of an organic farm and the relationships between some soil properties, nematode taxonomic diversity, and soil food web condition. Eight habitats were studied in the farm: ponds, ditches, a riparian corridor, hedgerows, and four agricultural fields (mustard, oats, fallow, and legumes). The undisturbed riparian corridor had higher soil and concentrations, and potentially mineralizable N and higher abundances of bacterivore nematodes and longer food webs. Canonical correlation analysis showed associations between habitats and nematode trophic groups: predatory and bacterial-feeding nematodes in the riparian corridor and hedgerows, omnivore nematodes in the ponds and ditches, and fungal-feeding nematodes in the legume field. Soil chemical and physical properties mirrored the aboveground farm patterns and were more similar among habitats that were or had been cultivated, compared to the riparian corridor. Soil food web indices, based on functional analysis of nematode faunal composition, reflected the aboveground landscape heterogeneity. Discriminant analysis indicated that soil food web indices separated the two most disturbed habitats (ponds and tailwater ditches) from the two least disturbed habitats (the riparian corridor and hedgerows). The indices correlated with soil functioning as inferred by soil properties. Abundance of nematode taxa was not associated with aboveground landscape patterns. The complexity of the soil food web may have been influenced by (1) environmental factors that differed between years, (2) different time periods since disturbance in the various habitats, and (3) movement of nutrients and organisms by water flow between habitats in the farmscale.  相似文献   

16.
 To study the effects of omnivory on the structure and function of soil food webs and on the control of trophic-level biomasses in soil, two food webs were established in microcosms. The first one contained fungi, bacteria, a fungivorous nematode (Aphelenchoides saprophilus) and a bacterivorous nematode (Caenorhabditis elegans), and the second one fungi, bacteria, the fungivore and an omnivorous nematode (Mesodiplogaster sp.) feeding on both bacteria and the fungivore. Half of the replicates of each food web received additional glucose. The microcosms were sampled destructively at 5, 9, 13 and 19 weeks to estimate the biomass of microbes and nematodes and the soil NH4 +-N concentration. The evolution of CO2 was measured to assess microbial respiration. Microbial respiration was increased and soil NH4 +-N concentration decreased by the addition of glucose, whereas neither was affected by the food-web structure. Supplementary energy increased the biomass of fungi and the fungivore, but decreased the biomass of bacteria, the bacterivore and the omnivore. The omnivore achieved greater biomass than the bacterivore and reduced the bacterial biomass less than the bacterivore. The biomass of the fungivore was smaller in the presence of the omnivore than in the presence of the bacterivore at three sampling occasions. Fungal biomass was not affected by food-web structure. The results show that the effects of the omnivore were restricted to its resources, whereas more remote organisms and soil processes were not substantially influenced. The results also indicate that the presence of an omnivore does not necessarily alter the control of populations as compared with a food web containing distinct trophic levels, and that the fungal and bacterial channels may respond differently to changes in energy supply. Received: 15 December 1997  相似文献   

17.
It is increasingly believed that substantial soil organic carbon (SOC) can be sequestered in conservation tillage system by manipulating the functional groups of soil biota. Soil aggregates of different size provide diverse microhabitats for soil biota and consequently influence C sequestration. Our objective was to evaluate the contributions of soil biota induced by tillage systems to C sequestration among different aggregate size fractions. Soil microbial and nematode communities were examined within four aggregate fractions: large macroaggregates (>2 mm), macroaggregates (2–1 mm), small macroaggregates (1–0.25 mm) and microaggregates (<0.25 mm) isolated from three tillage systems: no tillage (NT), ridge tillage (RT) and conventional tillage (CT) in Northeast China. Soil microbial and nematode communities varied across both tillage systems and aggregate fractions. The activity and abundance of microbes and nematodes were generally higher under NT and RT than under CT. Among the four aggregate fractions, soil microbial biomass and diversity were higher in microaggregates, while soil nematode abundance and diversity were higher in large macroaggregates. Structural equation modelling (SEM) revealed that the linkage between microbial and nematode communities and their contributions to soil C accumulation in >1 mm aggregate fractions were different from those in <1 mm aggregate fractions. Higher abundance of arbuscular mycorrhizal fungi (AMF) could enhance C retention within >1 mm aggregates, while more gram-positive bacteria and plant-parasitic nematodes might increase C accumulation within <1 mm aggregates. Our findings suggested that the increase in microbial biomass and nematode abundance and the alteration in their community composition at the micro-niche within aggregates could contribute to the higher C sequestration in conservation tillage systems (NT and RT).  相似文献   

18.
Soil nematode communities were investigated at eight semi-natural steppe grasslands in the National Park Seewinkel, eastern Austria. Four sites were moderately grazed by horses, cattle and donkeys, four were ungrazed. Nematodes were sampled on four occasions from mineral soil, and their total abundance, diversity of genera, trophic structure and functional guilds were determined. Altogether 58 nematode genera inhabited the grasslands, with Acrobeloides, Anaplectus, Heterocephalobus, Prismatolaimus, Aphelenchoides, Aphelenchus, Tylenchus and Pratylenchus dominating. Mean total abundance at sites was 185–590 individuals per 100 g soil. Diversity indices did not separate communities well, but cluster analysis showed distinct site effects on nematode generic structure. Within feeding groups the relative proportion of bacterial-feeding nematodes was the highest, followed by the fungal- and plant-feeding group. Omnivores and predators occurred in low abundance. The maturity indices and plant parasite indices were characteristic for temperate grasslands, but the abundance of early colonizers (c-p 1 nematodes) was low. A high density of fungal-feeding c-p 2 families (Aphelenchoidae, Aphelenchoididae) resulted in remarkably high channel index values, suggesting that decomposition pathways are driven by fungi. Nematode community indices of all sites pointed towards a structured, non-enriched soil food web. At most sites, grazing showed little or no effect on nematode community parameters, but total abundance was higher at ungrazed areas. Significant differences in the percentage of omnivorous nematodes, the sum of the maturity index, the number of genera and Simpson's index of diversity were found at one long-term grazed pasture, and this site was also separated by multi-dimensional scaling (MDS).  相似文献   

19.
We prepared soil with greater populations of bacterial-feeding nematodes either by stimulating the native populations of the soil, adding an additional mixed community of nematodes, or by adding Caenorhabditis elegans, to investigate the effects of bacterial-feeding nematodes on root morphology, soil auxin (indolyl-3-acetic acid—IAA) concentrations and microbial community structure. In the presence of enhanced bacterial-feeding nematode populations, tomato plants had a more highly branched root system with longer and thinner roots. Root system development was greater with native nematodes than C. elegans. The changes of root morphology were accompanied by an increase of soil IAA content and an altered microbial community structure. Bacterial-feeding nematodes may have affected plant growth by stimulating hormone production through grazing-induced changes to the soil microbial community.  相似文献   

20.
The effect of several bacterial-feeding nematodes of the Cephalobidae family (Zeldia punctata, Acrobeloides nanus and Cephalobus pseudoparvus) on the microbial community of a Sahelian soil (Senegal) was investigated in microcosm. The consequences of the activity of these nematodes on the growth and nitrogen nutrition of young maize plants (aerial biomass, root biomass and nitrogen content) were also estimated. Laboratory-cultured nematodes were inoculated into soil containing maize seedlings where the natural nematofauna had been previously eliminated by alternately freezing and defrosting (five cycles). The microbial compartment of the soil community was characterised through total microbial biomass (using fumigation-extraction), density of bacteria (using colony forming units counts), microbial activity (using alkaline phosphatase) and genetic structure of soil microbial community (using denaturing gradient gel electrophoresis) at sowing and at 12, 26 and 47 days after planting. Final nematode densities in the different treatments (between 4 and 20 Ind g−1 dry soil) demonstrated a high level of reproduction. The different types of nematodes tested induced similar trends in changes in the microbial pool of the soil and in maize seedling growth. Compared to control soils, the presence of nematodes led to an increase (+12%) in plant biomass and reduced concentrations of soil ammonium but had no effect on concentrations of nitrate by the end of the experiment. Sixty-three percent of the inorganic nitrogen initially present in the soil was incorporated into the maize plants with nematodes whereas only 47% was incorporated without nematodes. Nematode activity led to a significant decrease in microbial biomass (−28%) and density of cultivable bacteria (−55%), however, nematodes stimulated bacterial activity (+18%). The effects of Z. punctata were weakest compared to A. nanus and C. pseudoparvus. The presence of nematodes modified the genetic structure of the microbial community essentially by changing the relative abundance of dominant bacterial populations. Among nematode species tested, A. nanus modified the structure of the microbial communities the most compared with control soils without nematodes. Overall, results from this study provide evidence for the ability of microbial feeding nematodes to alter microbial activity, microbial community structure, nitrogen mineralisation and growth of maize seedlings in a Sahelian soil from Senegal, West Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号