首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

2.
As a key component of desert ecosystems, biological soil crusts (BSCs) play an important role in dune fixation and maintaining soil biota. Soil microbial properties associated with the colonization and development of BSCs may indicate soil quality changes, particularly following dune stabilization. However, very little is known about the influence of BSCs on soil microbes in sand dunes. We examined the influence of BSCs on soil microbial biomass and community composition in revegetated areas of the Tengger Desert. BSCs increased soil microbial biomass (biomass C and N), microbial phospholipid fatty acid (PLFA) concentrations and the ratio of fungal to bacterial PLFAs. The effects varied with crust type and crust age. Moss crusts had higher microbial biomass and microbial PLFA concentrations than cyanobacteria-lichen crusts. Crust age was positively correlated with microbial biomass C and N, microbial PLFA concentrations, bacterial PLFA concentrations, fungal PLFA concentrations and the ratio of fungal to bacterial PLFAs. BSCs significantly affected microbial biomass C and N in the 0–20 cm soil layers, showing a significant negative correlation with soil depth. The study demonstrated that the colonization and development of BSCs was beneficial for soil microbial properties and soil quality in the revegetated areas. This can be attributed to BSCs increasing topsoil thickness after dunes have been stabilized, creating suitable habitats and providing an essential food source for soil microbes.  相似文献   

3.
Water and nutrients are scarce resources in arid and semiarid ecosystems. In these regions, biological soil crusts (BSCs) occupy a large part of the soil surface in the open spaces surrounding patches of vegetation. BSCs affect physicochemical soil properties, such as aggregate stability, water retention, organic carbon (OC) and nitrogen (N) content, associated with primary ecosystem processes like water availability and soil fertility. However, the way BSCs modify soil surface and subsurface properties greatly depends on the type of BSC. We hypothesised that physicochemical properties of soil crusts and of their underlying soils would improve with crust development stage. Physicochemical properties of various types of soil crusts (physical crusts and several BSC development stages) and of the underlying soil (soil layers 0–1 cm and 1–5 cm underneath the crusts) in two semiarid areas in SE Spain were analysed. The properties that differed significantly depending on crust development stage were aggregate stability, water content (WC) (at −33 kPa and −1500 kPa), OC and N content. Aggregate stability was higher under well-developed BSCs (cyanobacterial, lichen and moss crusts) than under physical crusts or incipient BSCs. WC, OC and N content significantly increased in the crust and its underlying soil with crust development, especially in the first centimetre of soil underneath the crust. Our results highlight the significant role of BSCs in water availability, soil stability and soil fertility in semiarid areas.  相似文献   

4.
Monomethyl-mercury is one of the most toxic compounds. Methylation of Hg usually appears under anoxic conditions. In Swiss forest soils, methyl-Hg concentrations of up to 3 μg kg−1 soil dw have been observed, but the impact of methyl-Hg on soil microorganisms have rarely been examined so far. In this study, we investigated the effect of increasing concentrations of methyl-Hg (0, 5, 20, 90 μg kg−1 soil dw) on the microbial communities in various forest soils differing in their physico-chemical properties. Experiments were conducted in microcosms under controlled conditions and the basal respiration (BR), the microbial biomass carbon (MBC) and the bacterial and fungal community structures using T-RFLP-profiling were investigated. BR was significantly affected by methyl-Hg. In general, the BR increased with increasing methyl-Hg concentrations, whereas the MBC was significantly reduced. Bacterial communities were more sensitive to methyl-Hg than fungal communities. In five out of seven soils, the bacterial community structures differed significantly between the treatments whereas the fungal communities did not. The impact of methyl-Hg on the soil bacterial communities was site specific. In one soil, a methyl-Hg concentration of already 5 μg kg−1 soil dw significantly affected the relative abundance of 13% bacterial operational taxonomic units (OTU), whereas in other soils concentrations of even 90 μg kg−1 soil dw rarely affected the abundance of OTUs. In this study, for the first time, the impact of methyl-Hg on soil bacterial and fungal communities in forest soils was assessed. We showed that its impact strongly depends on the physico-chemical conditions of the soil and that bacterial communities were more sensitive to methyl-Hg than fungi.  相似文献   

5.
Serious nitrogen (N) deposition in terrestrial ecosystems causes soil acidification and changes the structure and function of the microbial community. However, it is unclear how these changes are dependent on N deposition rates, other factors induced by N (e.g., pH), and their interactions. In this study, we investigated the responses of soil prokaryotic community structure and stability after a 13-year N addition in the semi-arid Leymus chinensis steppe in Inner Mongolia, China. Our results demonstrated that the prokaryotic community structure changed at the low N addition rate of 1.75 g N m−2 yr−1; however, dramatic changes in microbial abundance, respiratory quotient, and prokaryotic diversity occurred at N addition rates of more than 5.25 g N m−2 yr−1 when the soil pH dropped below 6.0. The two patterns indicated the difference in driving forces for different microbial properties. The N-driven and pH-driven processes are likely the most important mechanisms determining the responses of bacterial community to N. Some copiotrophic/oligotrophic bacteria, e.g., Proteobacteria and Acidobacteria, changed their relative abundances with the N addition continuously even at a low rate, indicating that they were more sensitive to N directly. Some bacterial groups significantly changed their relative abundance at a high N addition rate when pH dropped below 6.0, e.g., Verrucomicrobia and Armatimonadetes, indicating that they were more sensitive to pH below 6.0. N addition altered the prokaryotic community structure through enrichment of copiotrophic bacteria (species adjustment) at low N addition rates and through enrichment of nitrophilous taxa and significant loss of diversity at high N rates. The results also demonstrated that a high N addition diminished the stability of the prokaryotic community structure and activity through reduction in species diversity and bacterial interaction. Overall, this study supported the hypothesis that the responses of prokaryota to N were dependent on deposition rates, and N-driven and pH-driven processes were the important mechanisms to control the shift of the prokaryotic community.  相似文献   

6.
Biological soil crusts (BSCs) have important ecological functions in arid and semiarid lands, but they remain poorly understood in terms of the changes in microbial communities during BSC succession under in situ field conditions. Here, 454 pyrosequencing was used to assess the microbial community composition of four BSC types in the Tengger Desert of China: alga, lichen (cyanolichen and green alga-lichen), and moss crusts, representing early, middle, and final successional stages of BSCs, respectively. The results showed the highest diversity of microbial communities inhabiting lichen crusts, whereas the lowest diversity was observed in moss crusts. Five phyla, Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Acidobacteria, accounted for about 72% to 87% of total prokaryotic sequences in different BSCs. The most abundant eukaryotic microorganism was Ascomycota, accounting for 47% to 93% of the total eukaryotic sequences. Along the succession of BSCs, the abundance of photoautotrophic Cyanobacteria, Chlorophyta, and Bacillariophyta declined, and that of heterotrophic microorganisms such as bacteria and fungi increased. Statistical analysis showed clear divergency of microbial taxa at the class level among the different successional stages of BSCs. The clustering results at class level showed that the moss crusts were the farthest from the rest in prokaryotic composition; the alga crusts were the most different in terms of eukaryotic microorganisms and the two kinds of lichen crusts were relatively closer in both compositions. Ordination analysis showed that the main variations of community structure among BSCs could be explained best by the abundance of Cyanobacteria and Ascomycota and by physiochemical properties of BSCs, including mechanical composition, moisture, and electrical conductivity. In conclusion, our results indicate that Cyanobacteria and Ascomycota likely play an important role in the evolution of BSC structure and functions and highlight the importance of environmental factors in shaping microbial community structures of BSCs in the Tengger Desert of China.  相似文献   

7.
This study investigated the effects of inoculation with three individual ectomycorrhizal (ECM) fungal species on soil microbial biomass carbon and indigenous bacterial community functional diversity in the rhizosphere of Chinese pine (Pinus tabulaeformis Carr.) seedlings under field experimental conditions. The results showed that ECM fungal inoculation significantly increased the ectomycorrhizal colonization compared with non-inoculated seedlings. ECM fungal inoculations have higher soil microbial biomass carbon than that of control, ranging from 49.6 μg C g?1 dry soil in control to 134.02 μg C g?1 dry soil in treatment inoculated with Boletus luridus Schaeff ex Fr. Multivariate analyses (PCA) of BIOLOG data revealed that the application of ECM fungi significantly influenced bacterial functional diversity in the rhizosphere of P. tabulaeformis seedlings. The highest average well-color development (AWCD) and functional diversity indices were also observed in treatment inoculated with B. luridus. A wider range of sole carbon sources were utilized by the bacterial community in the rhizosphere of inoculated seedlings. The data gathered from this study provides important information for utilization of ECM fungi in forest restoration project in the Northwestern China. The present study will also significantly broaden our understanding of practical importance in the application of ECM fungal inoculum to promote soil microbial community diversity of soil.  相似文献   

8.
Soils are being degraded at an alarming rate and thereby also crucial ecosystem goods and services. Nitrogen (N) enrichment is a major driver of this degradation. While the negative impacts of N enrichment on vegetation are well known globally, those on various ecological interactions, and on ecosystem functioning, remain largely unknown. Because Mediterranean ecosystems are N limited, they are good model systems for evaluating how N enrichment impacts not only vegetation but also ecological partnerships and ecosystem functioning. Using a 7‐year N‐manipulation (dose and form) field experiment running in a Mediterranean Basin maquis located in a region with naturally low ambient N deposition (<4 kg N ha−1 y−1), we assessed the impacts of the N additions on (i) the dominant plant species (photosynthetic N‐use efficiency); (ii) plant–soil ecological partnerships with ectomycorrhiza and N‐fixing bacteria; and (iii) ecosystem degradation (plant–soil cover, biological mineral weathering and soil N fixation). N additions significantly disrupted plant–soil cover, plant–soil biotic interactions, and ecosystem functioning compared with ambient N deposition conditions. However, the higher the ammonium dose (alone or with nitrate), the more drastic these disruptions were. We report a critical threshold at 20–40 kg ammonium ha−1 y−1 whereby severe ecosystem degradation can be expected. These observations are critical to help explain the mechanisms behind ecosystem degradation, to describe the collective loss of organisms and multifunction in the landscape, and to predict potential fragmentation of Mediterranean maquis under conditions of unrelieved N enrichment. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The activity of heterotrophic soil microorganisms is usually limited by the availability and quality of carbon (C). Adding organic substances will thus trigger a microbial response. We studied the response in bacterial growth and respiration after the addition of low amounts of glucose. First we determined if additions of glucose, at concentrations which did not result in an exponential increase in respiration after the lag phase, still stimulated bacterial growth. The second aim was to determine the threshold concentration of glucose needed to induce bacterial growth. Adding glucose-C at 1000 μg g−1 soil resulted in an increased respiration rate, which was stable during 12 h, and then decreased without showing any exponential increase in respiration. Bacterial growth, determined as leucine incorporation, did not change compared to an unamended control during the first 12 h, but then increased to levels 5 times higher than in the control. Thus, after the lag phase, a period with increasing bacterial growth, but at the same time decreasing respiration rates, was found. Similar results, but with a more modest increase in bacterial growth, were found using 500 μg glucose-C g−1 soil. Adding 50–700 μg glucose-C g−1 resulted in increased respiration during 24 h correlating with the addition rate. In contrast, bacterial growth after 24 h was only stimulated by glucose additions >200 μg C g−1 soil. Thus, there was a threshold concentration of added substrate for inducing bacterial growth. Below the threshold concentration growth and respiration appear to be uncoupled.  相似文献   

10.
Nitrogen losses from agricultural grasslands cause eutrophication of ground- and surface water and contribute to global warming and atmospheric pollution. It is widely assumed that soils with a higher fungal biomass have lower N losses, but this relationship has never been experimentally confirmed. With the increased interest in soil-based ecosystem services and sustainable management of soils, such a relationship would be relevant for agricultural management. Here we present a first attempt to test this relationship experimentally. We used intact soil columns from two plots from a field experiment that had consistent differences in fungal biomass (68 ± 8 vs. 111 ± 9 μg C g−1) as a result of different fertilizer history (80 vs. 40 kg N ha−1 y−1 as farm yard manure), while other soil properties were very similar. We performed two greenhouse experiments: in the main experiment the columns received either mineral fertilizer N or no N (control). We measured N leaching, N2O emission and denitrification from the columns during 4 weeks, after which we analyzed fungal and bacterial biomass and soil N pools. In the additional 15N experiment we traced added N in leachates, soil, plants and microbial biomass. We found that in the main experiment, N2O emission and denitrification were lower in the high fungal biomass soil, irrespective of the addition of fertilizer N. Higher 15N recovery in the high fungal biomass soil also indicated lower N losses through dentrification. In the main experiment, N leaching after fertilizer addition showed a 3-fold increase compared to the control in low fungal biomass soil (11.9 ± 1.0 and 3.9 ± 1.0 kg N ha−1, respectively), but did not increase in high fungal biomass soil (6.4 ± 0.9 after N addition vs. 4.5 ± 0.8 kg N ha−1 in the control). Thus, in the high fungal biomass soil more N was immobilized. However, the 15N experiment did not confirm these results; N leaching was higher in high fungal biomass soil, even though this soil showed higher immobilization of 15N into microbial biomass. However, only 3% of total 15N was found in the microbial biomass 2 weeks after the mineral fertilization. Most of the recovered 15N was found in plants (approximately 25%) and soil organic matter (approximately 15%), and these amounts did not differ between the high and the low fungal biomass soil. Our main experiment confirmed the assumption of lower N losses in a soil with higher fungal biomass. The additional 15N experiment showed that higher fungal biomass is probably not the direct cause of higher N retention, but rather the result of low nitrogen availability. Both experiments confirmed that higher fungal biomass can be considered as an indicator of higher nitrogen retention in soils.  相似文献   

11.
The ecology and functional role of biological soil crusts (BSCs) in arid and semi-arid zones have been extremely well studied. However, little is known about the biochemical properties related to the number and activity of the microbiota that form the crusts, even though information about these properties is very important for understanding many of the processes that affect the formations. In this study, several properties related to the activity and number of microorganisms (biomass-C, basal respiration, dehydrogenase activity and nitrogen mineralization potential) were determined at different depths (crusts, 0–0.5 cm; middle, 0.5–3 cm and deep, 3–5 cm layers) in two types of crusts (predominated by cyanobacteria and by lichens) in the Tabernas desert (Almeria, SE Spain). The absolute values of the above-mentioned properties and the values expressed relative to the total organic carbon (TOC) content were both much higher in the crust layers than in the surface horizons of soils under Mediterranean or Atlantic climates. A large part of the TOC in the BSCs was contained in the microbiota and another large part was readily metabolized during incubation of the crusts for 10 days at 25 °C. The net nitrogen mineralization rate was also high, and ammonification predominated in the crust layers, whereas nitrification predominated in the middle and deep layers. In all types of BSCs, the microbiota colonized the deep layers, although with greater intensity in the lichen-dominated BSCs than in the cyanobacterial BSCs. The results also indicate that hydrolytic enzymes are not stabilized on soil colloids and their activity depends only on the active microbiota.  相似文献   

12.
Identifying the patterns of soil microbial responses to increasing nitrogen (N) availability are important since microbial processes are related to the potential nutrient transformations. The effects of the addition of N to the soil microbial community of the Gurbantunggut Desert, China, are described in this paper. The study was conducted over a two-year period with trials commencing at the beginning of each growing season. Soil enzyme activity, microbial biomass and microbial community level physiological profile (CLPP) were determined at 0–5 cm and 5–10 cm soil depths. Nitrogen was added to the soil at five rates plus a control, i.e. 0, 0.5, 1, 3, 6 and 24 g N m−2 y−1. We hypothesized that soil enzyme activities and microbial biomass N (MBN) would firstly increase and then decrease, and CLPP would be altered with increasing N addition, due to the deleterious effects of higher N addition upon microbial activity. Because of the relatively higher organic matter in the upper depth of soil layers, we further hypothesized that the responses of microbial activities in the 0–5 cm depth would be more marked than at 5–10 cm. In partial support of our hypothesis, soil enzyme activities, microbial biomass and nutrient concentrations responded to N addition with the most significant changes occurring in the 0–5 cm soil depth. Addition of N resulted in an increase in MBN and a decrease in urease activity. Invertase and alkaline phosphatase (AlP) activities increased at low doses of N addition and showed a decrease at higher doses. There was no evidence of change in oxidative enzyme activity at low N treatments but activity decreased at high N additions. However, the CLPP was not affected by N addition. The results of this study suggest that N supplementation in this desert soil may affect C transformation, increase availability of N and P, and immobilize N in the microbial biomass. Responses of the enzyme activity to N supplementation occurred within the context of an apparently stable or unresponsive microbial community structure.  相似文献   

13.
Biological soil crusts (BSCs) cover up to 70% of the sparsely-vegetated areas in arid and semiarid regions throughout the world and play a vital role in dune stabilization in desert ecosystems. Soil enzyme activities could be used as significant bioindicators of soil recovery after sand burial. However, little is known about the relationship between BSCs and soil enzyme activities. The objective of this study was to determine whether BSCs could affect soil enzyme activities in revegetated areas of the Tengger Desert. The results showed that BSCs significantly promoted the activities of soil urease, invertase, catalase and dehydrogenase. The effects also varied with crust type and the elapsed time since sand dune stabilization. All the soil enzyme activities tested in this study were greater under moss crusts than under cyanobacteria–lichen crusts. The elapsed time since sand dune stabilization correlated positively with the four enzyme activities. The enzyme activities varied with soil depth and season, regardless of crust type. Cyanobacteria–lichen and moss crusts significantly enhanced all test enzyme activities in the 0–20 cm soil layer, but negatively correlated with soil depth. All four enzyme activities were greater in the summer and autumn than in spring and winter due to the vigorous growth of the crusts. Our study demonstrated that the colonization and development of BSCs could improve soil quality and promote soil recovery in degraded areas of the Tengger Desert.  相似文献   

14.
Application of C-rich plant residues can change the soil system from C-limitation for microbial growth to limitation by other nutrients. However, the initial nutrient status of the soil may interact with the added amount of residues in determining limitation. We studied this interactive effect in soils from the Harvard Forest LTER, where annual addition of N since 1988 has resulted in soils with different N-status: No N (Unfertilized), 50 (Low N) and 150 (High N) kg N ha−1. We hypothesized that adding C-rich substrate would change the soil from being C- to being N-limited for bacterial growth and that the extent of N-limitation would be higher with increasing substrate additions, while becoming less evident in soil with increasing N-status. We compared the effect of adding two C-rich substrates, starch (0, 10, 20, 40 mg g−1 soil) and straw (0, 20, 40, 80 mg g−1), incubating the soils for up to 3 and 4 weeks for starch and straw, respectively. Nutrient limitations were studied by measuring bacterial growth 3 days after adding C as glucose and N as NH4NO3 in a full factorial design. Initially bacterial growth in all soils was C-limited. As hypothesized, adding C-rich substrates removed the C-limitation, with lower amounts of starch and straw needed in the unfertilized and Low N soils than in the High N soil. Combinations of different N-status of the soil and amendment levels of starch and straw could be found, where bacterial growth appeared close to co-limited both by available C and N. However, at even higher amendment levels, presumable resulting in N-limitation, bacterial growth still responded less by adding N then C-limited soils by adding C. Thus, in a C-limited soil there appeared to be N available immediate for growth, while in an N-limited soil, easily available C was not immediately available.  相似文献   

15.
The dynamics of soil water-stable aggregation (WSA) following organic matter (OM) addition are controlled by microbial activity, which in turn is influenced by carbon substrate quality and mineral N availability. However, the role of microbial communities in determining WSA at different stages of OM decomposition remains largely unknown. This study aimed at evaluating the role of microbial communities in WSA during OM decomposition as affected by mineral N. In a 35-day incubation experiment, we studied the decomposition of two high-C/N crop residues (miscanthus, C/N = 311.3; and wheat, C/N = 125.6) applied at 4 g C kg−1 dry soil with or without mineral N addition (120 mg N kg−1 dry soil). Microbial characteristics were measured at day 0, 7, and 35 of the experiment, and related to previous results of WSA. Early increase in WSA (at 7 days) was related to an overall increase of the microbial biomass (MBC) with wheat residues showing higher values in MBC and WSA than miscanthus. In the intermediate stage of decomposition (from day 7 to 35), the dynamics of WSA were more associated with the dynamics of microbial polysaccharides and greatly influenced by mineral N addition. Mineral N addition resulted in a decrease or leveling off of WSA whereas it increased in its absence. We suggest that opportunistic bacterial populations stimulated by N addition may have consumed binding agents which decreased WSA or prevented its increase. To the contrary, microbial polysaccharide production was high when no mineral N was added which led to the higher WSA in the late stage of decomposition in this treatment. The late stage of decomposition was associated with a particular fungal community also influenced by the mineral N treatment. We suggest that WSA dynamics in the late stage of decomposition can be considered as a « narrow process³ where the structure of the microbial community plays a greater role than during the initial stages.  相似文献   

16.
Nitrogen (N) is an essential element associated with crop yield and its availability is largely controlled by microbially-mediated processes. The abundance of microbial functional genes (MFG) involved in N transformations can be influenced by agricultural practices and soil amendments. Biochar may alter microbial functional gene abundances through changing soil properties, thereby affecting N cycling and its availability to crops. The objective of this study was to assess the effects of wood biochar application on N retention and MFG under field settings. This was achieved by characterising soil labile N and their stable isotope compositions and by quantifying the gene abundance of nifH (nitrogen fixation), narG (nitrate reduction), nirS, nirK (nitrite reduction), nosZ (nitrous oxide reduction), and bacterial and archeal amoA (ammonia oxidation). A wood-based biochar was applied to a macadamia orchard soil at rates of 10 t ha−1 (B10) and 30 t ha−1 (B30). The soil was sampled after 6 and 12 months. The abundance of narG in both B10 and B30 was lower than that of control at both sampling months. Canonical Correspondence Analysis showed that soil variables (including dissolved organic C, NO3–N and NH4+–N) and sampling time influenced MFG, but biochar did not directly impact on MFG. Twelve months after biochar application, NH4+–N concentrations had significantly decreased in both B10 (4.74 μg g−1) and B30 (5.49 μg g−1) compared to C10 (13.9 μg g−1) and C30 (17.9 μg g−1), whereas NO3–N concentrations increased significantly in B30 (24.7 μg g−1) compared to B10 (12.7 μg g−1) and control plots (6.18 μg g−1 and 7.97 μg g−1 in C10 and C30 respectively). At month 12, significant δ15N of NO3–N depletion observed in B30 may have been caused by a marked increase in NO3–N availability and retention in those plots. Hence, it is probable that the N retention in high rate biochar plots was mediated primarily by abiotic factors.  相似文献   

17.
Soil microorganisms secrete enzymes used to metabolize carbon (C), nitrogen (N), and phosphorus (P) from the organic materials typically found in soil. Because of the connection with the active microbial biomass, soil enzyme activities can be used to investigate microbial nutrient cycling including the microbial response to environmental changes, transformation rates and to address the location of the most active biomass. In a 9-year field study on global change scenarios related to increasing N inputs (ambient to 15 g N m−2 yr−1) and precipitation (ambient to 180 mm yr−1), we tested the activities of soil β-glucosidase (BG), N-acetyl-glucosaminidase (NAG) and acid phosphomonoesterase (PME) for three soil aggregate classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm) and microaggregates (<250 μm). Results showed higher BG and PME activities in micro-vs. small macroaggregates whereas the highest NAG activity was found in the large macroaggregates. This distribution of enzyme activity suggests a higher contribution of fast-growing microorganisms in the micro-compared with the macroaggregates size fractions. The responses of BG and PME were different from NAG activity under N addition, as BG and PME decreased as much as 47.1% and 36.3%, respectively, while the NAG increased by as much as 80.8%, which could imply better adaption of fungi than bacteria to lower soil pH conditions developed under increased N. Significant increases in BG and PME activities by as much as 103.4 and 75.4%, respectively, were found under water addition. Lower ratio of BG:NAG and higher NAG:PME underlined enhanced microbial N limitation relative to both C and P, suggesting the repression of microbial activity and the accompanied decline in their ability to compete for N with plants and/or the accelerated proliferation of soil fungi under elevated N inputs. We conclude that changes in microbial activities under increased N input and greater water availability in arid- and semi-arid grassland ecosystems where NPP is co-limited by N and water may result in substantial redistribution of microbial activity in different-sized soil particles. This shift will influence the stability of SOM in the soil aggregates and the nutrient limitation of soil biota.  相似文献   

18.
Soil respiration is an important carbon (C) flux of global C cycle, and greatly affected by nitrogen (N) addition in the form of deposition or fertilization. However, the effects of N addition on the different components of soil respiration are poorly understood. The aim of this study is to investigate how the components of soil respiration response to N addition and the potential mechanisms in a subtropical bamboo ecosystem. Four N treatment levels (0, 50, 150, 300 kg N ha−1 year−1) were applied monthly in a Pleioblastus amarus bamboo plantation since November 2007. Total soil respiration (RST) and soil respiration derived from litter layer (RSL), root-free soil (RSS), and plant roots (RSR) were measured for one year (February 2010 to January 2011). The results showed that the mean rate of RST was 428 ± 11 g C m−2 year−1, and RSL, RSS, RSR contributed (30.2 ± 0.7)%, (20.7 ± 0.9)%, and (49.1 ± 0.7)%, respectively. The temperature coefficients (Q10) of RST, RSL, RSS, and RSR were 2.87, 2.28, 3.09, and 3.19, respectively, in control plots. Nitrogen additions significantly increased RST and its three components. RSR was stimulated by N additions through increasing fine root biomass and root metabolic rate. The positive effects of N additions on soil fertility, microbial activity, and the quality and amount of aboveground litterfall also stimulated other CO2 production processes. In the background of increased N input, response of RST and components of RST are primarily due to the positive response of plant growth in this bamboo ecosystem.  相似文献   

19.
To investigate the uptake by the microbial community of easily decomposable exogenous organic C and the proportion of this organic C remaining in soils under long-term fertilization schemes, 13C-glucose was supplied to arable soils (aquic inceptisol) following a 20-year (1989–2009) application of compost (CM) or inorganic NPK (NPK), along with a control (no fertilizer). Phospholipid fatty acids (PLFAs) were used as biomarkers for actinobacteria, bacteria and fungi. Gas chromatography–combustion–stable isotope ratio mass spectrometry (GC–C–IRMS) was used to determine the incorporation of 13C into individual PLFAs. The concentrations of soil microbial PLFAs significantly (P < 0.05) increased in all three soils after the addition of 13C-glucose. Over a 30-day incubation period, the highest PLFA concentrations were on day 7 (control) or day 15 (NPK and CM) for bacteria, and on day 30 for both fungi and actinobacteria. The added 13C-glucose was incorporated into bacterial PLFAs first, whilst an increase of 13C in fungal and actinobacterial PLFAs was measured on day 7 and 15, respectively. The mean amounts of 13C in bacterial, actinobacterial and fungal PLFAs in CM-treated soil during the 30-day incubation period were 0.589, 0.030 and 0.056 μg g−1 soil, respectively, which were significantly (P < 0.05) higher than levels measured in the NPK and control soils. Among the bacterial groups, the amount of 13C in Gram-positive (G+) bacteria over the entire incubation ranged from 0.326 to 0.440 μg g−1 soil in the CM scheme, which was significantly (P < 0.05) higher than levels detected in the NPK and control regimes. In contrast, 13C concentrations in monounsaturated PLFAs (aerobic microorganisms) in the CM-treated soil were 0.030–0.045 μg g−1 soil, which was significantly (P < 0.05) lower than in the NPK schemes. The proportion of glucose-derived 13C remaining in soils was ranked as follows: CM (53%) > NPK (41%) > control (28%) after 30 days of incubation. Easily decomposable exogenous organic C was thus more effectively maintained under the CM regime, primarily because, after 20 years, CM had altered the microbial community by reducing the ratio of aerobic to anaerobic microorganisms whilst increasing levels of G+ bacteria in soil compared to the control and NPK soils. This study aids our understanding of the transformation and maintenance of easily decomposable organic C in soil over long-term fertilization regimes.  相似文献   

20.
《Applied soil ecology》2010,46(3):175-186
Increases in fertilizer inputs and livestock numbers affect plant species composition and richness; this in turn can affect the biodiversity of soil fauna and nutrient cycling in pastures. We selected two adjacent farmlets to study these effects. Since 1980, one farmlet (LF) had not received superphosphate fertilizer (SSP) and has a low stock density of sheep, and the other (HF) had received 37.5 g SSP m−2 y−1 and has a high stock density. In 2004, at both farmlets, we commenced treatments for 4 years, adding urea to raise N status, and non-residual selective herbicide to remove broadleaf species. Long-term SSP addition and increased sheep numbers, and added urea increased herbage production but reduced plant diversity. The effect of treatments on most of the soil biochemical and biological properties varied between years. This may have partly arisen from an infestation with Wiseana caterpillars in the first winter, causing resources to be low and total soil carbon (C) to be reduced by 4–8%; total C did, however, recover in later years. The urea and herbicide treatments caused greater changes above-ground than below-ground, but they did reduce soil microbial C and N and nematode diversity; urea at LF increased mineralizable N to the levels found at HF. On an area basis, HF generally had higher total C and N, earthworm and nematode numbers (including bacterial feeders, predators and omnivores), and nematode diversity, and greater values for the nematode channel ratio, than did LF. In contrast, the ratios of microbial C/total C and microbial N/total N, total mite numbers (including Oribatida, but not other mite groups), and fungal-feeding nematode numbers were higher at LF than at HF. Canonical correlation analysis suggested the plant and soil nematode communities responded in tandem and in predictable ways to the same environmental factors. Increased quantity and quality of inputs disadvantaged the fungal-based energy channel, with a measurable decline in the quantity of fungal phospholipid fatty acids (PLFAs). While the quantity of bacterial PLFAs appeared to be unaffected by greater plant-derived inputs, the greater numbers of bacterial-feeding nematodes at the HF farmlet suggests the activity and flow of energy and nutrients through the bacterial community would be more important in the HF than the LF farmlet. Overall our results suggest the shift from fungal to bacterial pathways may lead to soil microbial/microfaunal interactions that retain less reactive N within soil biomass, with a consequent greater risk of N loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号