共查询到13条相似文献,搜索用时 57 毫秒
1.
2.
采用注意力机制与改进YOLOv5的水下珍品检测 总被引:2,自引:2,他引:0
海胆、海参、扇贝等水下珍品在渔业中具有重要意义和价值,最近,利用机器人捕捞水下珍品成为发展趋势。为了探测水下珍品的数量及分布情况,使水下机器人获得更加可靠的数据,该研究提出基于注意力机制与改进YOLOv5的水下珍品检测方法。首先,使用K-means匹配新的锚点坐标,增加多个检测尺度提升检测精度;其次,将注意力机制模块融入特征提取网络Darknet-53中获得重要特征;然后,利用Ghost模块的轻量化技术优势,引入由Ghost模块构成的Ghost-BottleNeck代替YOLOv5中的BottleNeck模块,大幅度降低网络模型的参数与计算量;最后,将IOU_nms修改为DIOU_nms以优化损失函数。采用基于实际水下环境建立的数据集,样本数量为781幅图像,按照9∶1的比例随机划分训练与测试集,对改进的网络进行验证。结果表明,该研究算法可获得95.67%平均准确率,相比YOLOv5算法可提升5.49个百分点,试验效果良好,研究结果可以为水下珍品的检测捕捉提供更加准确快捷的方法。 相似文献
3.
随着机器视觉技术的发展,猪脸识别作为猪只个体识别方法之一受到广泛关注。为了探索非接触式的猪只个体精准识别,该研究通过深度学习模型DenseNet融合CBAM(Convolutional Block Attention Module),建立改进的DenseNet-CBAM模型对猪脸进行识别。将DenseNet121模型进行精简,然后将CBAM注意力模块嵌入到精简的DenseNet121分类网络之前,以加强对关键特征的提取,实现猪脸图像的分类。以随机采集的1 195张猪脸图像作为数据集对本文模型进行测试。结果表明,DenseNet-CBAM模型对个体猪脸识别的准确率达到99.25%,模型参数量仅为DenseNet121的1/10;与ResNet50、GoogLeNet和MobileNet模型相比,DenseNet-CBAM的识别准确率分别提高了2.18、3.60和23.94个百分点。研究结果可为智能化养殖过程非接触式个体识别提供参考。 相似文献
4.
探明海洋生物资源的分布情况,对渔业捕捞和海洋牧场管理具有重要意义。该研究针对水下环境复杂、水下目标存在多尺度、多类别及小目标较多等复杂情况,提出水下目标两阶段网络检测方法。首先通过改进多尺度特征提取和融合,获取水下目标多尺度信息和增强目标特征,得到更加丰富的目标特征信息,然后构建多重注意力,利用空间和通道维度中的全局特征依赖关系,进一步挖掘深层特征信息和隐藏信息,突出背景和目标的差异性,最后在模型训练中采用样本均衡方法,自适应均衡正负样本比例,减少无效样本,实现模型快速收敛。在国际水下机器人大赛公开数据集UPRC2019、WildFish及自建数据集上对所提方法进行试验,其mAP(mean Average Precision)分别达到85.3%、96.9%和97.8%,召回率分别达到90.6%、98.7%和98.9%,相较于Libra RCNN(CVPR2019)、Double head RCNN(ECCV2020)和STransFuse(2021)等检测方法,本文方法mAP要比上述方法分别高9.58、12.2和4.1个百分点。研究结果可为海洋渔业生物监测、水下机器人精准捕捞作业提供技术支撑。 相似文献
5.
牛面部检测与识别是牛场智能化养殖的关键,但由于牧场养殖环境的复杂性,牛脸检测会受到模糊、逆光和遮挡3种常见环境因素的严重干扰。针对此问题,该研究提出一种复杂场景下基于自适应注意力机制的牛脸检测算法,该算法首先针对3种干扰因素分别设计了评价指标,并将3种不同类型的评价指标通过模糊隶属度函数进行归一化,并确定自适应权重系数,真实反映目标所处场景的复杂性;之后,基于YOLOV7-tiny在主干特征提取网络引入一种新型注意力机制CDAA(composite dual-branch adaptive attention),设计通道和空间注意力并行结构,并融合自适应权重系数,有效加强相应注意力分支的权重,提高网络在复杂场景下的特征提取能力,解决复杂场景下网络检测精度差的问题;最后,将图像场景评价指标引入损失函数,对大尺度网格损失函数的权重进行自适应调整,使网络在训练过程中更专注于数量较多的小型目标,从而提升网络整体的检测精度。为检测算法的有效性和实时性,在特定数据集上进行消融试验,并与多种经典检测算法进行对比,并移植至Jetson Xavier NX平台测试。测试结果表明,该算法检测精度达到89.58%,相较于原YOLOV7-tiny网络,牛脸检测精度提高了7.34个百分点。检测速度达到62帧/s,在检测速度几乎不损失的条件下,检测效果优于原网络与对比网络。 研究结果可为复杂场景下的牛脸高效检测提供参考。 相似文献
6.
针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。 相似文献
7.
面部对齐是猪脸识别中至关重要的步骤,而实现面部对齐的必要前提是对面部关键点的精准检测。生猪易动且面部姿态多变,导致猪脸关键点提取不准确,且目前没有准确快捷的猪脸关键点检测方法。针对上述问题,该研究提出了生猪面部关键点精准检测模型YOLO-MOB-DFC,将人脸关键点检测模型YOLOv5Face进行改进并用于猪脸关键点检测。首先,使用重参数化的MobileOne作为骨干网络降低了模型参数量;然后,融合解耦全连接注意力模块捕捉远距离空间位置像素之间的依赖性,使模型能够更多地关注猪面部区域,提升模型的检测性能;最后,采用轻量级上采样算子CARAFE充分感知邻域内聚合的上下文信息,使关键点提取更加准确。结合自建的猪脸数据集进行模型测试,结果表明,YOLO-MOB-DFC的猪脸检测平均精度达到99.0%,检测速度为153帧/s,关键点的标准化平均误差为2.344%。相比RetinaFace模型,平均精度提升了5.43%,模型参数量降低了78.59%,帧率提升了91.25%,标准化平均误差降低了2.774%;相较于YOLOv5s-Face模型,平均精度提高了2.48%,模型参数量降低了18.29%,标准化平均误差降低了0.567%。该文提出的YOLO-MOB-DFC模型参数量较少,连续帧间的标准化平均误差波动更加稳定,削弱了猪脸姿态多变对关键点检测准确性的影响,同时具有较高的检测精度和检测效率,能够满足猪脸数据准确、快速采集的需求,为高质量猪脸开集识别数据集的构建以及非侵入式生猪身份智能识别奠定基础。 相似文献
8.
针对番茄早期缺素性状不明显及各生长期特征差异较大所导致的特征区域尺寸不一致、难提取、难辩别等问题,提出了一种基于注意力机制及多尺度特征融合卷积神经网络的番茄叶片缺素图像分类方法(Multi-Scale Feature Fusion Convolutional Neural Networks Based On Atte ntion Mechanism,MSFF-AM-CNNs)。首先根据番茄叶片缺素特点提出了多尺度特征融合结构(Multi-Scale Feature Fusion Module,MSFF Module);其次在DenseNet基础上,结合浅层网络主要提取纹理、细节特征,深层网络主要提取轮廓、形状特征的特点分别提出具有针对性的特征提取方法,通过不同形式引入注意力机制及多尺度特征融合结构,使全局多尺度信息融合多个特征通道、选择性地强调信息特征并达到对特征精准定位的功能;同时引入Focal Loss函数以减少易分类样本的权重。试验结果表明,MSFF-AM-CNNs的平均召回率、平均F1得分、平均准确率较原模型DenseNet-121均大幅提升,其中缺氮和缺钾叶片的准确率分别提高了8.06和6.14个百分点,召回率分别提高了6.31和5.00个百分点,F1得分分别提高了7.25和5.55个百分点,平均识别准确率可达95.92%,具有较高的识别准确率及广泛的适用性,能够满足番茄叶片缺素图像的高精度分类需求,可为植物叶片缺素识别提供参考。 相似文献
9.
为解决柑橘经过套袋后其形状从圆形变为条状且纹理细节急剧减低,导致当前目标检测算法对套袋柑橘检测难度增大,同时目标检测算法性能依赖于有标记样本数量的问题。该研究设计了一种基于教师学生模型的SPM(Strip Pooling Module)-YOLOv5算法,在YOLOv5的骨干网络中加入条带注意力模块使模型更加关注条状的套袋柑橘与树枝,同时教师学生模型为半监督方法,使目标检测算法可利用无标记样本提升模型的性能,降低对有标记样本的依赖。试验结果表明,该文算法在套袋柑橘与树枝检测的平均精度均值分别为77.4%与53.5%,相比YOLOv5分别提升了7.5个百分点与7.6个百分点,套袋柑橘检测的精度与召回率达到94%与76.2%。因此,基于教师学生模型的SPM-YOLOv5算法精度高、速度快,能有效用于套袋柑橘检测。 相似文献
10.
准确识别农作物病害并及时防护是保障农作物产量的重要措施。针对传统农作物病害识别模型体积大、准确率不高的问题,该研究提出一种基于注意力机制和多尺度特征融合的轻量型神经网络模型(Lightweight Multi-scale Attention Convolutional Neural Networks,LMA-CNNs)。首先,为减少参数量,使模型轻量化,网络主体结构采用深度可分离卷积;其次,在深度可分离卷积基础上设计出残差注意力模块和多尺度特征融合模块;同时引入Leaky ReLU激活函数增强负值特征的提取。残差注意力模块通过嵌入通道和空间注意力机制,增强有用特征信息的权重并减弱噪声等干扰信息的权重,残差连接能够有效防止网络退化。多尺度特征融合模块利用其不同尺度的卷积核提取多种尺度的病害特征,提高特征的丰富度。试验结果表明,LMA-CNNs模型在59类公开农作物病害图像测试集上的准确率为88.08%,参数量仅为0.14×107,优于ResNet34、ResNeXt、ShuffleNetV2等经典神经网络模型。通过比较不同研究者在同一数据集下所设计的网络模型,进一步验证LMA-CNNs模型不仅拥有更高的识别精度,还具有更少的参数。该研究提出的LMA-CNNs模型较好地平衡模型复杂程度和识别准确率,为移动端农作物病害检测提供参考。 相似文献
11.
为解决传统小肠绒毛需要专业人员手动检测耗时耗力且存在主观性和不稳定性等问题,同时提高在复杂病理学图像中小肠绒毛检测的准确率和效率,该研究提出基于改进YOLOv5s检测复杂病理学图像下猪只小肠绒毛的方法。首先,采用串联形式的混合池化对空间金字塔进行优化,增强特征提取与特征表达,提升检测精度;然后引入一种基于注意力机制的网络模块(simpleattentionmechanism,SimAM)与Bottleneck中的残差连接相结合,使用SimAM对Bottleneck中的特征图进行加权,得到加权后的特征表示,利用注意力机制加强模型对目标的感知。试验结果表明,该研究算法的平均精度(average precision)和每秒传输帧数(frame per second,FPS)达到92.43%和40帧/s。改进后的YOLOv5s在召回率和平均精度上相较改进前提高2.49和4.62个百分点,在不增加模型参数量的情况下,每帧图片的推理时间缩短1.04 ms。与经典的目标检测算法SSD、Faster R-CNN、YOLOv6s、YOLOX相比,平均精度分别提高15.16、10.56、2.03和4.07... 相似文献
12.
为解决复杂猪舍环境下猪只堆叠和粘连导致群养猪只攻击行为识别准确率低和有效性差的问题,该研究提出一种改进的YOLOX模型,引入攻击活动比例(PAA)和攻击行为比例(PAB)2个优化指标,对群养猪只的撞击、咬耳和咬尾等典型攻击行为进行识别。首先,为提高模型特征提取能力添加归一化注意力模块获取YOLOX颈部的全局信息;其次,将YOLOX中的IoU损失函数替换为GIoU损失函数,以提升识别精度;最后,为保证模型的实时性将空间金字塔池化结构SPP轻量化为SPPF,增强检测效率。试验结果表明,改进的YOLOX模型平均精度达97.57%,比YOLOX模型提高6.8个百分点。此外,当PAA和PAB阈值分别为0.2和0.4时,识别准确率达98.55%,有效解决因猪只攻击行为动作连续导致单帧图像行为识别可信度低的问题。研究结果表明,改进的YOLOX模型融合PAA和PAB能够实现高精度的猪只攻击行为识别,为群养生猪智能化监测提供有效参考和技术支持。 相似文献
13.
果实表型数据高通量、自动获取是果树新品种育种研究的基础,实现幼果精准检测是获取生长数据的关键。幼果期果实微小且与叶片颜色相近,检测难度大。为了实现自然环境下苹果幼果的高效检测,采用融合挤压激发块(Squeeze-and-Excitation block, SE block)和非局部块(Non-Local block, NL block)两种视觉注意机制,提出了一种改进的YOLOv4网络模型(YOLOv4-SENL)。YOLOv4模型的骨干网络提取高级视觉特征后,利用SE block在通道维度整合高级特征,实现通道信息的加强。在模型改进路径聚合网络(Path Aggregation Network, PAN)的3个路径中加入NL block,结合非局部信息与局部信息增强特征。SE block和NL block两种视觉注意机制从通道和非局部两个方面重新整合高级特征,强调特征中的通道信息和长程依赖,提高网络对背景与果实的特征捕捉能力。最后由不同尺寸的特征图实现不同大小幼果的坐标和类别计算。经过1 920幅训练集图像训练,网络在600幅测试集上的平均精度为96.9%,分别比SSD、Faster R-CNN和YOLOv4模型的平均精度提高了6.9百分点、1.5百分点和0.2百分点,表明该算法可准确地实现幼果期苹果目标检测。模型在480幅验证集的消融试验结果表明,仅保留YOLOv4-SENL中的SE block比YOLOv4模型精度提高了3.8百分点;仅保留YOLOv4-SENL中3个NL block视觉注意模块比YOLOv4模型的精度提高了2.7百分点;将YOLOv4-SENL中SE block与NL blocks相换,比YOLOv4模型的精度提高了4.1百分点,表明两种视觉注意机制可在增加少量参数的基础上显著提升网络对苹果幼果的感知能力。该研究结果可为果树育种研究获取果实信息提供参考。 相似文献