首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

2.
Microbial biomass is an important source of soil organic matter, which plays crucial roles in the maintenance of soil fertility and food security. However, the mineralization and transformation of microbial biomass by the dominant soil macrofauna earthworms are still unclear. We performed feeding trials with the geophagous earthworm Metaphire guillelmi using 14C-labelled bacteria (Escherichia coli and Bacillus megaterium) cells, fungal (Penicillium chrysogenum) cells, protein, peptidoglycan, and chitin. The mineralization rate of the microbial cells and cell components was significantly 1.2–4.0-fold higher in soil with the presence of M. guillelmi for seven days than in earthworm-free soil and 1–11-fold higher than in fresh earthworm cast material. When the earthworms were removed from the soil, the mineralization of the residual carbon of the microbial biomass was significantly lower than that in the earthworm-free soil, indicating that M. guillelmi affects the mineralization of the biomass in soil in two aspects: first stimulation and then reduction, which were attributed to the passage of the microbial biomass through the earthworm gut, and that the microorganisms in the cast could play only minor roles in the stimulated mineralization and residual stabilization of microbial biomass. Large amounts (8–29%) of radiolabel of the tested microbial biomass were assimilated in the earthworm tissue. Accumulation of fungal cells (11%) and cell wall component chitin (29%) in the tissue was significantly higher than that of bacterial cells (8%) and cell wall component peptidoglycan (15%). Feeding trails with 14C-lablled microbial cells and cell components provided direct evidence that microbial biomass is a food source for geophagous earthworm and fungal biomass is likely a more important food source for earthworms than bacterial biomass. Findings of this study have important implications for the roles of geophagous earthworms in the fate of microbial biomass in soil.  相似文献   

3.
We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha–1 year–1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg–1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.  相似文献   

4.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

5.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

6.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

7.
Although reduced tillage is an agricultural practice reported to decrease soil erosion and external inputs while enhancing soil fertility, it has still rarely been adopted by European organic farmers. The objective of this study was to assess the long-term interactive effects of tillage (conventional (CT) vs. reduced (RT)) and fertilization (slurry (S) vs. composted manure/slurry (MCS)) on earthworms and microbial communities in a clay soil under spelt in an organic 6-year crop rotation. Earthworm populations (species, density and biomass, cocoons) were investigated by handsorting the soil nine years after initial implementation of the treatments. Soil microbial carbon (Cmic) and nitrogen (Nmic) were measured by chloroform-fumigation extraction and a simplified phospholipid fatty acid (PLFA) analysis was used to separate for populations of bacteria, fungi and protozoa. Significantly increased total earthworm density in RT plots was mainly attributed to increased numbers of juveniles. Moreover, we found five times more cocoons with RT. Species richness was not affected by the treatments, but tillage treatments had differentially affected populations at the species-level. In addition, cluster analysis at the community level revealed two distinct groups of plots in relation to tillage treatments. In RT plots Cmic increased in the 0–10 cm and 10–20 cm soil layers, while PLFA concentrations indicative of Gram-negative bacteria, fungi and protozoa only increased in the topsoil. Lower bacteria-to-fungi ratios in the upper soil layer of RT plots indicated a shift to fungal-based decomposition of organic matter whereas a higher Cmic-to-Corg ratio pointed towards enhanced substrate availability. Slurry application decreased microbial biomass and enhanced density of juvenile anecic earthworms but overall fertilization effect was weak and no interactions with tillage were found. In conclusion, tillage is a major driver in altering communities of earthworms and microorganisms in arable soils. The use of reduced tillage provides an approach for eco-intensification by enhancing inherent soil biota functions under organic arable farming.  相似文献   

8.
《Soil biology & biochemistry》2001,33(4-5):583-591
Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.  相似文献   

9.
《Pedobiologia》2014,57(3):161-169
C mineralization and aggregate stability directly depend upon organic matter and clay content, and both processes are influenced by the activity of microorganisms and soil fauna. However, quantitative data are scarce. To achieve a gradient in C and clay content, a topsoil was mixed with a subsoil. Single soils and the soil mixture were amended with 1.0 mg maize litter C g soil−1 with and without endogeic earthworms (Aporrectodea caliginosa). The differently treated soils were incubated for 49 days at 15 °C and 40% water holding capacity. Cumulative C mineralization, microbial biomass, ergosterol content and aggregate fractions were investigated and litter derived C in bulk soil and aggregates were determined using isotope analyses. Results from the soil mixture were compared with the calculated mean values of the two single soils. Mixing of soil horizons differing in carbon and clay content stimulated C mineralization of added maize residues as well as of soil organic matter. Mixing also increased contents of macro-aggregate C and decreased contents of micro-aggregate C. Although A. caliginosa had a stimulating effect on C mineralization in all soils, decomposition of added litter by A. caliginosa was higher in the subsoil, whereas A. caliginosa decreased litter decomposition in the soil mixture and the topsoil. Litter derived C in macro-aggregates was higher with A. caliginosa than with litter only. In the C poor subsoil amended with litter, A. caliginosa stimulated the microbial community as indicated by the increase in microbial biomass. Furthermore, the decrease of ergosterol in the earthworm treated soils showed the influence of A. caliginosa on the microbial community, by reducing saprotrophic fungi. Overall, our data suggest both a decrease of saprotrophic fungi by selective grazing, burrowing and casting activity as well as a stimulation of the microbial community by A. caliginosa.  相似文献   

10.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

11.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

12.
Conservation agriculture practices, such as reduced tillage, cover crops and fertilization, are often associated with greater microbial biomass and activity that are linked to improvements in soil quality. This study characterized the impact of long term (31 years) tillage (till and no-till), cover crops (Hairy vetch- Vicia villosa and winter wheat- Triticum aestivum, and a no cover control), and N-rates (0, 34, 67 and 101 kg N ha−1) on soil microbial community structure, activity and resultant soil quality calculated using the soil management assessment framework (SMAF) scoring index under continuous cotton (Gossypium hirsutum) production on a Lexington silt loam in West Tennessee.No-till treatments were characterized by a significantly greater (P < 0.05) abundance of Gram positive bacteria, actinomycetes and mycorrhizae fungi fatty acid methyl ester (FAME) biomarkers compared to till. Saprophytic fungal FAME biomarkers were significantly less abundant (P < 0.05) under no-till treatments resulting in a lower fungi to bacteria (F:B) ratio. Key enzymes associated with C, N & P cycling (β-glucosidase, β-glucosaminidase, and phosphodiesterase) had significantly higher rates under no-till relative to till, corresponding to significantly greater (P < 0.05) soil C and N, extractable nutrients (P, K and Ca) and yields. Mycorrhizae fungi biomarkers significantly decreased (P < 0.05) with increasing N-rate and was significantly less (P < 0.05) under the vetch cover crop compared to wheat and no cover. Treatments under vetch also had significantly higher β-glucosaminidase and basal microbial respiration rates compared to wheat and no cover.Consequently, the total organic carbon (TOC) and β-glucosidase SMAF quality scores were significantly greater under no-till compared to till and under the vetch compared to wheat and no cover treatments, resulting in a significantly greater overall soil quality index (SQI).Our results demonstrate that long-term no-till and use of cover crops under a low biomass monoculture crop production system like cotton results in significant shifts in the microbial community structure, activity, and conditions that favor C, N and P cycling compared to those under conventional tillage practices. These practices also led to increased yields and improved soil quality with no-till having 13% greater yields than till and treatments under vetch having 5% increase in soil quality compared to no cover and wheat.  相似文献   

13.
Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments:control with no earthworms,regular density(RD)with two earthworms,and increased density(ID)with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms.Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation(P<0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.  相似文献   

14.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

15.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

16.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

17.
Few earthworms are present in production agricultural fields in the semi-arid plains of Colorado, where earthworm populations may be constrained by limited water and/or organic matter resources. We conducted a 12-week laboratory incubation study to determine the potential of a non-native endogeic earthworm (Aporrectodea caliginosa) to survive in a low-organic matter Colorado soil (1.4% organic C content), supplemented with or without biosolids, and to determine the effects of A. caliginosa on soil microbial biomass and soil nutrient availability. A factorial design with three main effects of A. caliginosa, biosolids addition, and time was used. Data was collected through destructively sampling at one, two, four, eight, and twelve weeks. During the 12-week study, 97.5% of the worms in the soil survived, and the survival of the earthworms was not significantly affected by the addition of biosolids. The addition of biosolids, however, did significantly reduce the gain in mass of the earthworms (8% mass gain compared to 18% in soil without biosolids). The presence of A. caliginosa significantly increased soil NH4-N, and NO3-N concentrations by 31% and 4%, respectively, which was less than the six fold increases in both soil NH4-N, and NO3-N concentrations supplied from biosolids. Microbial biomass carbon was not affected by A. caliginosa, but microbial biomass N was affected by an earthworm × biosolids interaction at week 1 and 12. We concluded that A. caliginosa can survive in a low-organic matter Colorado soil under optimal moisture content and that once established, A. caliginosa can provide modest increases in inorganic N availability to crops Colorado agroecosystems.  相似文献   

18.
Humic substances play a key role in the global carbon cycling and the sequestration of micropollutants in soil. The transformation of these substances by earthworms, the dominant soil macroinvertebrates of many terrestrial ecosystems, and the mechanisms involved are still obscure. We prepared two chemically identical humic model compounds that were specifically 14C-labeled either in the aromatic or the proteinaceous component, and added them to soil incubated with the geophagous earthworm species Metaphire guillelmi (anecic) and Amynthas corrugatus (endogeic). In the absence of the earthworms, both the aromatic and the proteinaceous components were mineralized at similarly low rates (5−8% after 9 days of incubation). In the presence of the earthworms, mineralization rate of the proteinaceous component was strongly stimulated (2-fold by M. guillelmi and 1.4-fold by A. corrugatus). The mineralization rate of the aromatic component was (slightly) stimulated (1.2-fold; P < 0.05) only by A. corrugatus. In all cases, the stimulated mineralization was accompanied by a transformation of radiolabeled humic acids to fulvic acids within the earthworm guts and by an incorporation of radiolabel into the earthworm tissues. Digestion of the proteinaceous component of humic acids by the earthworms was corroborated also by a decrease of extractable humic acids in fresh cast and a stimulated mineralization of soil nitrogen; in the case of M. guillelmi, the fresh cast contained sixfold more NH4+ than the non-ingested soil. Our study provides direct evidence for the selective digestion of humic components by earthworms. Considering the ubiquity of geophagous earthworms and their large biomass, the alteration of the chemical structure of humic substances by the earthworms through their selective digestion of peptidic components may have significant impacts on the stability of humic substances and the bioavailability of micropollutants in soil.  相似文献   

19.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

20.
Changes in plant antioxidant enzymes (AOEs) in response to cadmium (Cd) pollution are an important mechanism for plant growth and tolerance to Cd-induced stress. The main objective of this greenhouse study was to determine the combined influence of earthworm and arbuscular mycorrhiza (AM) fungal inoculation and their interactions with Cd on AOEs and proline accumulation in leaves of two major crops under Cd stress. Maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were exposed to Cd stress (10 and 20 mg kg−1 soil), inoculated with either earthworm (Lumbricus rubellus L.) or AM fungi (Glomus intraradices and Glomus mosseae species) in a pot experiment for three months. Exposure to Cd decreased shoot dry weights, increased shoot Cd and P concentrations, leaf proline accumulation and the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO) in both mycorrhizal and non-mycorrhizal plants and both in the presence and absence of earthworms. Inoculation of both model plants with earthworms and AM fungi decreased shoot Cd concentrations and the activity of all AOEs, except PPO. Although earthworm activity enhanced the proline content of sunflower in Cd-polluted soils, the proline level of both plants remained unaffected by AM fungi. AM fungi and earthworms may decrease the activity of AOEs through a decline in shoot Cd toxicity and concentration, confirming that plant inoculation with these soil organisms improves maize and sunflower tolerance and protection against Cd toxicity. Generally, the effect of AM fungal inoculation on plant responses to Cd addition was greater than that of earthworm activity. Nonetheless, the interactive effect of AM fungus and earthworm is of minor importance for most of the plant AOEs in Cd-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号