首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The inheritance of resistance to clubroot, caused by Plasmodiophora brassicae, in Brassica oleracea was studied in the F1, F2and backcross progenies of four crosses between resistant and susceptible doubled haploid lines. The disease severity was scored visually on a 0–3 scale of symptom grades. These were analyzed qualitatively and quantitatively. The qualitative analysis involved the conversion of symptom grades to a classification as resistant or susceptible, and segregation ratios were used to test several simple genetic models. The quantitative analysis was based on a threshold model, in which symptom grades are considered to arise from splitting a continuous response range into disjoint intervals. This analysis was based on the maximum likelihood method, and several genetic models were evaluated.Of the four resistances studied, one was shown to be largely determined by two complementary genes. Two other resistances were also shown to be probably controlled by two genes, but the mode of inheritance was not determined unambiguously. The fourth resistance appeared to be determined by more than two genes.  相似文献   

2.
G. O. Myers  S. C. Anand 《Euphytica》1991,55(3):197-201
Summary The objectives of this study were to determine if genes for resistance to soybean cyst nematode (SCN) in soybean PI 437654 were identical or different from the genes in Peking, and PI 90763. The F2 plants and F3 families were studied from crosses between PI 437654, Peking, and PI 90763. The cross PI 437654 × susceptible Essex was included to determine inheritance of resistance to SCN. For Race 3, PI 437654 was found to have genes in common with Peking and PI 90763. The segregation in PI 437654 × Essex indicated the presence of one dominant and two recessive genes. For Race 5, PI 437654 indicated the presence of similar genes as those in PI 90763 and Peking whereas, PI 437654 × Essex indicated the action of the segregation ratios of two dominant and two recessive genes. For Race 14, the data from the cross PI 437654 × PI 90763 indicated monogenic inheritance with resistance being dominant; whereas PI 437654 × Peking showed a recessive gene controlling resistance. The segregation in PI 437654(R) × Essex(S) suggested one dominant and two recessive genes for Race 14 reaction.  相似文献   

3.
V.J. Joshi  S.D. Ugale 《Euphytica》2002,127(2):149-161
Inheritance of downy mildew [Sclerospora graminicola (Sacc.) Schrot]resistance was studied using generation mean analysis in pearl millet [Pennisetum glaucum (L.) R.Br.]. Eleven basic generations, namely, P1, P2, F1, F2, B1, B2, B1F2, B2F2, L1, L2 and L3 of three crosses involving six diverse lines for downy mildew incidence were evaluated under artificial epiphytotic conditions over two environments. The downy mildew incidence was best fitting for digenic, trigenic and tetragenic ratios when fitted into classical Mendelian ratios demonstrating involvement of two or more genes. Digenic and trigenic interaction models were adequate in the case of crosses I and III respectively, to account for the total variability in generation means. Unlike severity, comparative estimates of gene effects over two environments were mostly consistent in all crosses for prevalence. Most of the epistatic and major gene effects were found significant in all crosses for both the disease traits. Non-allelic interactions particularly at three-gene loci viz., w (additive × additive × additive) and y (additive × dominance × dominance) in cross II and all trigenic interactions in cross III were predominant. Duplicate dominance (cross I) and complementary epistasis (crosses II and III) were observed for both the traits revealing inconsistency of gene effects over crosses. The gd1 (interaction of additive gene effect with e1) and gh1(interaction of dominant gene effect with e1) were significant in crosses I and II, indicating interaction of additive and dominance gene effects with environments. Thus a breeding method that can mop up the resistant genes to form superior gene constellations interacting in a favorable manner against pathotype I would be more suitable to accelerate the pace of resistance improvement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位   总被引:1,自引:0,他引:1  
针对我国北方和长江流域大豆产区广泛分布的SMV株系SC6和SC17,利用2个抗病大豆品种Q0926和中豆35分别与感病品种南农1138-2和南农菜豆5号配制2个抗感杂交组合Q0926×南农1138-2和中豆35×南农菜豆5号以及一个抗抗组合Q0926×中豆35,研究3个组合的F1、F2、F2:3抗性遗传规律,探讨Q0926对SC6和中豆35对SC17及2个抗病品种对同一SMV株系抗性基因的等位关系,并对大豆对2个株系的抗病基因进行了标记定位。结果显示,Q0926×南农1138-2和中豆35×南农菜豆5号2个抗感杂交组合在分别接种SC6和SC17后,F1表现抗病,F2呈3抗∶1感分离比例,F2:3家系呈1抗∶2分离∶1感病的分离比率,表明Q0926对SC6和中豆35对SC17的抗病性分别由1对显性基因控制;抗抗组合Q0926×中豆35的F1和F2在接种2个株系后均未发现感病单株,表明Q0926与中豆35对SC6和SC17株系的抗病基因分别是等位或紧密连锁的。分别利用2个抗感组合的F2和F2:3群体对2个抗病基因的定位结果显示,第2染色体上的25个SSR标记与抗SC6的基因RSC6连锁,最近的2个标记与抗性基因RSC6的排列次序和遗传距离为BARCSOYSSR_02_0617(0.775 cM)-RSC6-BARCSOYSSR_02_0621(0.519 cM);第2染色体上的38个SSR标记与抗SC17的基因RSC17连锁。最近的2个标记与抗性基因RSC17的排列次序和遗传距离为BARCSOYSSR_02_0622(0.264 cM)-RSC17-BARCSOYSSR_02_0627(0.262 cM),其对应的物理区间分别为52 kb和60 kb。抗性遗传研究为抗大豆花叶病毒育种的亲本选配、后代选择提供了理论指导,抗性基因的标记定位研究为抗性基因的分子标记辅助选择和抗病基因的图位克隆奠定了基础。  相似文献   

5.
G. Singh    S. Rajaram    J. Montoya  G. Fuentes-Davila   《Plant Breeding》1995,114(5):439-441
Fourteen Mexican genotypes of bread wheat (Triticum aestivum L.) with good to moderate levels of resistance to Karnal bunt (Tilletia indica (Mitra)) were crossed with the highly susceptible cultivar WL711 to determine the genetic basis of resistance. The parents, F1 F2 and backcross populations of the 14 crosses were evaluated under artificial epiphytotic conditions during the 1993–94 season for Karnal bunt resistance. The F1 data suggested that the resistance was dominant to partially dominant over susceptibility. The F2 analysis of the segregation ratios in the F2 and backcross generations indicated that the resistance in the wheat genotypes Luan, Attila, Vee #7/Bow, Star, Weaver, Milan, Sasia and Turacio/Chil is controlled by two genes. The resistance in genotypes Cettia, Irena, Turaco, Opata, Picus, and Yaco was found to be conditioned by a single dominant gene. The genotypes with two genes for resistance expressed a higher level of resistance than those with a single gene and, therefore, are better sources of resistance to Karnal bunt.  相似文献   

6.
Six intervarietal crosses involving two resistant and three susceptible genotypes of mungbean were attempted with the objectives to determine the mode of inheritance of gene‐specific Mungbean Yellow Mosaic Virus (MYMV) resistance. An infector row technique along with artificial inoculation was used for evaluating parents, F1, F2 and F3 plants for MYMV resistance. Disease scoring for MYMV indicated that F1s were highly susceptible as were the susceptible parents while resistant parent exhibited resistant reaction. The F2 progeny segregated in the ratio of 9 S:3 MS:3 MR:1 R suggesting that the resistance was governed by digenic recessive genes (rm1 and rm2). When one gene (rm1) was present in the homozygous recessive condition in different plants, it conferred moderately susceptible (MS) reaction, whereas when other gene (rm2) was in homozygous condition, moderately resistant (MR) reaction was obvious. When both genes (rm1 and rm2) were present together in the homozygous recessive condition, resistant reaction (R) was observed. The F2 segregation explained on the basis of phenotypic expression was further confirmed by F3 segregation.  相似文献   

7.
Summary Avoidance of drought stress is commonly associated with root system characteristics and root development. The inheritance of root pulling resistance in rice (Oryza sativa L.) was investigated and its relationship with visual field scores for drought tolerance was studied. Transgressive segregation for high root pulling resistance was observed in 3 crosses (high x high, low x high, and intermediate x intermediate). Both dominant and additive genes control the variation. F1 superiority for high root pulling resistance was observed and could be exploited in an F1 hybrid breeding program. F2 distribution curves indicated that plants highly resistant to root pulling can be obtained not only from low x high and high x high crosses, but also from intermediate x intermediate crosses. Root pulling resistance in rice has a low heritability (39 to 47%). Thus, breeding for a high root pulling resistance may best be accomplished by selection based on line means rather than individual plant selection. Field screening showed significant differences in leaf water potential among random F3 lines. F3 lines with higher leaf water potential had better visual scores for drought tolerance. Visual drought tolerance scores were correlated with root pulling resistance. Plants with high root pulling resistance had the ability to maintain higher leaf water potentials under severe drought stress. The usefulness of the root pulling technique in selecting drought tolerant genotypes was confirmed.  相似文献   

8.
Summary Inheritance of aphid resistance and allelic relationships among sources of resistance was studied in the parents, F1, F2, F3, and backcross populations of cowpea crosses. Each 4-day old seedling was infested with five fourthinstar aphids. Seedling reaction was recorded 14–16 days after infestation when the susceptible check was killed. The segregation data from eight crosses between resistant and susceptible cowpea cultivars indicated that aphid resistance was inherited as a monogenic dominant trait. Segregation data from crosses among eight resistant cultivars indicated that one or two loci and modifier(s) were involved in the expression of resistance to aphids. It was suggested that further studies on allelism among sources of resistance needed to be conducted in order to resolve this.  相似文献   

9.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

10.
Despite being one of the important characteristics in determining pasta quality in durum wheat (Triticum turgidum ssp. durum), there is no direct report on inheritance of β-carotene concentration. The objectives of this study were to determine the inheritance of β-carotene concentration and the number of genes involved in six crosses of durum. For the cross PDW-233 (P1) × Bhalegaon-4 (P2), F1, F2, BCP1 and BCP2 populations were developed. For all other crosses, only the F1 and F2 populations were developed. β-carotene concentration was determined for all populations and parents of each cross grown at Hol, Maharastra, India. The cross PDW-233 × Bhalegaon-4 was also evaluated at Dharwad, Karnataka, India. Low β-carotene concentration was partially dominant in most of the crosses. Broad sense heritability was 67 and 91% at Dharwad and Hol, respectively, for the cross PDW-233 × Bhalegaon-4 and varied from 74 to 93% for the other five crosses indicating the presence of additive gene effects. The frequency distributions of the trait in the F2 populations were not normal and were skewed towards the lower parent. Segregation of β-carotene concentration in the six F2 populations indicated that at least two major genes and two or three minor genes with modifying effects govern the trait. Analysis of variance indicated that environment had comparatively little influence on the trait and this should allow for easy selection. The joint scaling test revealed additive × additive, additive × dominance and dominance × dominance epistatic interactions in the cross PDW-233 × Bhalegaon-4. These authors contributed equally.  相似文献   

11.
J. E. Parlevliet 《Euphytica》1978,27(2):369-379
Summary The latent period (LP) is a crucial component of partial resistance. Five cultivars, L94, Sultan (Su), Volla (Vl), Julia (Ju) and Vada (Va), representing the known range in partial resistance and LP were crossed in a diallel, and the F1, F2 and F3 tested. The LP effectuated by the five cultivars is about 9, 101/2, 101/2, 13 and 151/2 days, respectively. The crosses Su×L94, Vl×L94 and Ju×L94 had an F2 positively skewed. Their F2 means were similar or only slightly larger than the F1 means. The F2 frequency distributions in the crosses Vl×Su, Ju×Su and Ju×Vl were normal or nearly so with F1 and F2 means similar to each other and to the mid-parent value. The crosses involving Va as a parent again showed a positive skewness but with F2 means considerably larger than the F1 moans.Most F2's ranged from the low parent to the high parent values without transgression. In the crosses Va×L94 (reported earlier) and Ju×L94 the parental values were not recovered among 216 and 154 F2 plants, respectively. The cross Ju×Va showed transgression beyond the low parent, Ju.From these data it is concluded, assuming no linkage, that seven loci are involved. The + alleles (governing a longer LP) are thought to be distributed over the parents as follows: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGmb% GaaeyoaiaabsdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaab2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGTaGaaeylaiaabccacaqGGaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeylaiaab2caca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa% b2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae% iiaiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGaGaaeiiaiaabc% cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTaGaaeyl% aiaabccaaeaacaqGtbGaaeyDaiaabccacaqGGaGaaeiiaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaa% bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae% 4kaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqG% RaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2% cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii% aiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTaGaaeylaa% qaaiaabAfacaqGSbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGaaeiiaiaabc% cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGaaeii% aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGa% GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUca% caqGRaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aab2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2cacaqGTaaabaGaaeOs% aiaabwhacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaae4kaiaabUcacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaae4kaiaabUcacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaabccacaqGGaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaa% bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2cacaqGTaGaae% iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeylaiaab2caaeaacaqGwbGaaeyyaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcaca% qGRaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae4kaiaa% bUcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae% 4kaiaabUcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeylaiaab2cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc% cacaqGGaGaae4kaiaabUcacaqGGaGaaeiiaiaabccacaqGGaGaaeii% aiaabccacaqGGaGaaeiiaiaabUcacaqGRaaaaaa!1BBA!\[\begin{gathered} {\text{L94 - - - - - - - - - - - - - - }} \hfill \\ {\text{Su + + + + + + - - - - - - - - }} \hfill \\ {\text{Vl + + + + - - + + - - - - - - }} \hfill \\ {\text{Ju + + + + + + + + + + - - - - }} \hfill \\ {\text{Va + + + + + + + + - - + + + + }} \hfill \\ \end{gathered} \]The genes are supposed to act additively (intermediate inheritance) with the exception of one locus (the 6th or 7th locus) which shows dominance for the shorter LP (for the-alleles). The effect of this locus on LP seems considerably larger than that of the other loci. There are indications of physiological barriers, which means that LP's shorter than the one of L94 or much longer than that of Va are not possible.The effect of + genes in genotypes governing LP's close to these barriers (with very few or very many + alleles respectively) is smaller than in genotypes governing intermediate LP's.  相似文献   

12.
Summary Three lentil genotypes resistant to Fusarium oxysporum f.sp. lentis viz. Pant L 234, JL 446 and LP 286 were crossed with two susceptible ones. The hybrid plants were all resistant in the eight crosses evaluated. Segregation pattern for wilt reaction in F2, BC(P1), BC(P2) and F3 generations in field and glasshouse conditions indicated that resistance to Fusarium wilt is under the control of two dominant duplicate genes in Pant L 234 and two independent dominant genes with complementary effects in JL 446 and LP 286. A third dominant gene complementary to the dominant genes in JL 446 and LP 286 is present in two susceptible lines. Allelic tests suggest the presence of five independently segregating genes for resistance. Duplicate dominant genes in Pant L 234 are non-allelic to two dominant genes with complementary effects in LP 286 and JL 446 and the third gene complementary to the two genes in JL 446 and LP 286 in susceptible lines JL 641 and L 9–12. Gene symbols among parental genotypes have been designated.  相似文献   

13.
Long-term resistance to rust diseases depends on the identification and use of durable resistance sources or on the continuing use of new resistances and combinations of genes for specific resistance. These studies include four Australian wheats with intermediate, but inadequate levels of resistance and a French wheat ‘Hybride-de-Bersée’ (‘Bersee’), with reputed durable resistance to stripe rust. Studies of F2 and F3 populations from crosses with the susceptible ‘Avocet’ indicated that intermediate levels of adult plant stripe rust resistance in cultivars ‘Harrier’, ‘Flinders’ and ‘M2435’ were inherited monogenically, whereas King possessed two genes for resistance. Cultivars Harrier and M2435 possessed the same gene. Similarly, cvs. King and Flinders carried a gene in common. Like ‘Harrier’ and ‘M2435’, ‘King’ and ‘Flinders’ share common parents. The higher level of resistance in ‘Bersee’ was controlled by four genes. This conclusion was based on conventional genetic analysis, tests on F2-derived F7 single-seed descent lines and testcross progenies.  相似文献   

14.
P. Bartoš  I. Bareš 《Euphytica》1971,20(3):435-440
Summary Wheat cultivars Salzmünder Bartweizen and Weique gave a similar pattern of reaction type when tested with 27 different races of stem rust and 17 races of leaf rust from Canada and Czechoslovakia. Both cultivars were resistant to all races of stem rust and most of the races of leaf rust. Genetic studies indicated that the two varieties have the same genes for rust resistance, with the genes for leaf and stem rust being closely linked.Transmission of the genes for rust resistance was irregular and appeared to be associated with meiotic irregularities in chromosome pairing. In all F2 populations which deviated significantly from a 3:1 ratio, a deficiency of resistant plants was noted. The greatest deficiency was in the F2 of crosses involving Salzmünder Bartweizen, of which the F1 hybrid also had the greatest meiotic irregularities.Chimeral plants, of which the longitudinal half of the leaf showed a resistant reaction and the other half a susceptible reaction, were observed in crosses with Salzmünder Bartweizen.  相似文献   

15.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

16.
A set of 21 monosomic (2n ‐ 1) and the disomic (2n) lines of the ‘Chinese Spring’ cultivar were crossed with ‘Chirya‐3′, the CIMMYT synthetic wheat line which has been identified as highly resistant for Helminthosporium leaf blight disease (HLB), in order to locate the genes governing disease resistance. The F1 and segregating populations were challenged and screened against the most virulent pure mono‐conidial HLB isolate KL‐8 (Karnal, India). The F1 progenies of the crosses were found to be susceptible because of the recessive nature of resistance. The F2 progeny of the control cross (‘Chinese Spring’בChirya‐3’), segregated in the ratio of 1: 15 (resistant: susceptible), indicating that resistance to HLB was controlled by a pair of recessive genes. While the F2 progeny of 19 monosomic crosses segregated in the ratio of 1: 15 (resistant: susceptible), the progeny of the remaining two crosses, 7B and 7D, deviated significantly from the ratio, revealing that 7B and 7D were the critical chromosomes for resistance genes that were located one on each chromosome. Moreover, the critical lines, 7B and 7D, confirmed the digenic complementary recessive nature of gene action by fitting well with the overall pooled F2 segregation ratio of 13: 51 (resistant: susceptible) as expected for digenic complementary recessive resistance. The F3 segregation ratios of the critical crosses, based on their pooled F2 analysis, was estimated as 19: 32: 13 (non‐segregating susceptible: segregating as susceptible and resistant: non‐segregating resistant). F3 progenies when tested with these ratios showed goodness‐of‐fit, confirming that the two pairs of recessive resistance genes were located on chromosomes 7B and 7D.  相似文献   

17.
The inheritance of resistance to powdery mildew was investigated in 20 accessions of Hordeum spontaneum and in 20 F4 lines derived from crosses between the variety ‘Aramir’ and 13 accessions of H. spontaneum. Two resistance genes were detected in 17 accessions, and three resistance genes in one accession. In two accessions, only one resistance gene was present. The 20 breeding lines showed a large variation in infection type and infection level. The genetic relationship between the resistance genes detected was investigated in the seven most resistant F4 lines. These F4 lines were divided into three groups which carried different resistance genes. In two lines, the detected resistance gene was shown to be race-specific.  相似文献   

18.
Summary Variation in pigment content of the flour of bread wheats (Triticum aestivum L.) was studied in the progenies of F1 and F2 of three crosses and their reciprocals. Reciprocal differences in pigment content were observed in the F1 and F2 means. Low pigment content was found to be partially dominant or over dominant in the crosses studied. There was evidence of substantial mid-parent F1 heterosis in all crosses and betterparent F1 heterosis in three crosses. In the F2, heritability estimates were moderate to high. The F2 frequency distributions were not normal. Estimation of effective factor pairs indicated the presence of one or two major gene pairs involved in the expression of pigment content in the flour. Action of modifiers was also assumed in one cross and its reciprocal. A factorial approach to metrical character suggested that the F2 segregation ratios of low pigment content to high pigment content were 3:1, 15:1, 13:3 and 9:7 for the different crosses. Utilization of the findings in a wheat breeding program is briefly discussed.  相似文献   

19.
Summary Studies on inheritance of resistance to CGMMV showed that resistance was governed by polygenes with recessive nature. Out of 15 crosses studied, 10 were found to be interacting. All the interacting crosses (except one Phoot x Harela) showed duplicate type of epistasis. Kachri x Phoot (R × R type) cross exhibited heterosis in F1 and transgressive segregation in F2 for resistance. Studies pointed out the need to exploit this F1 further to develop a new breeding line with higher level of resistance than both the parents.  相似文献   

20.
Genetic resistance to broomrape (Orobanche cumana Wallr.) race F in sunflower line J1, derived from the wild perennial species Helianthusgrosseserratus Martens and Helianthus divaricatus L., has been reported to be controlled by dominant alleles at a single locus, Or6. However, deviations from this monogenic inheritance have been observed. The objective of the present study was to gain insight into the inheritance of resistance to broomrape race F in the sunflower line J1. F1, F2, F3 and BC generations from crosses between J1 and three susceptible lines, P21, NR5 and HA821 were evaluated. F1 hybrids showed both resistant (R) and moderately resistant (MR) plants, the latter having a maximum of five broomrape stalks per plant compared with >10 in the susceptible parents. This indicated incomplete dominance of the Or6 alleles. F2 plants were classified as R, MR or susceptible (more than five broomrape stalks per plant). Three different segregation ratios were observed: 3 : 1, 13 : 3 and 15 : 1 (R + MR : S), suggesting the presence of a second gene, Or7, whose expression was influenced by the environment. A digenic model was confirmed, based on the evaluation of F2:3 families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号