首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Reservoirs are mostly managed at local scales as spatially independent units. A basin‐scale perspective may increase awareness at a broader scope and generate insight not evident at local scales. We examined the array of reservoir attributes and fisheries in the Mississippi Basin to identify management opportunities. The basin is the third largest in the world and includes over 1,700 reservoirs >100 ha, the most of any river basin. Our bird's‐eye view shows a piecemeal approach where reservoirs are mostly administered at the local level. Basin‐wide or catchment coordination to holistically address problems that recur across the basin is mostly lacking. A basin‐wide coordination arrangement could facilitate various facets of reservoir management. We reviewed governance arrangements in major river basins across the globe and concluded that the basin‐wide administrative layer we encourage for the Mississippi Basin may already exist in some basins but may not be directly applicable everywhere.  相似文献   

2.
  • 1. Habitat loss and habitat fragmentation are usually correlated while habitat degradation may occur independently of them. Natural and anthropogenic disturbances increase the spatial fragmentation of seagrass meadows with unknown consequences on the vegetative development achieved by seagrass.
  • 2. Cover and spatial fragmentation of Thalassia testudinum meadows in three coral reef lagoons of the Veracruz Reef System,VRS (SW Gulf of México) were quantified by analysing low‐altitude images acquired by photographic and digital video cameras from a helium‐filled blimp. Spatial fragmentation was quantified as the ratio of the length of meadow edge to meadow area. The number of blowouts (erosive gaps in seagrass meadows) was also recorded.
  • 3. Meadow cover was negatively correlated with the length of meadow edge to meadow area ratio. The number of blowouts per ha of T. testudinum meadow was negatively correlated with meadow cover and positively with the length of meadow edge to meadow area ratio. Wave exposure is probably a main component of the processes determining the cover and spatial fragmentation of T. testudinum meadows in VRS.
  • 4. Low cover and high spatial fragmentation of T. testudinum meadows in VRS are associated with low vegetative development of this seagrass species. Copyright © 2011 John Wiley & Sons, Ltd.
  相似文献   

3.
1. In the Gulf of Aqaba (GoA), coral reefs are considered the dominating ecosystem, while seagrass meadows, recognized worldwide as important ecosystems, have received little attention. Absence of comprehensive seagrass maps limits awareness, evaluations of associated ecosystem services, and implementation of conservation and management tools. 2. Presented here are the first detailed maps of seagrass meadows along the Israeli coast of the northern GoA. Mapping was performed by snorkelling along transects perpendicular to the shore above meadows growing at 15–25 m. Measurements along these transects included position, meadow depth and visual estimations of seagrass cover. Shallow boundaries of meadows, parallel to shore, were recorded by GPS tracking. Supplementary work included drop‐camera boat surveys to determine the position of the deeper edge of meadows. In addition, GIS layers were created that indicated shoreline infrastructures, near‐shore human activities and potential pollution threats. Ecosystem services of seagrass meadows mapped were valuated using a benefit transfer approach. 3. In total, 9.7 km of the 11 km shoreline were surveyed and 2830 data points collected. Seagrasses were growing along 7.5 km of the shoreline, with shallow (15–25 m) meadows found to cover an area of 707 000 m2 and valued at more than US$ 2 000 000 yr‐1 in associated ecosystem services. Pilot drop‐camera surveys (additional 283 data points) indicated that meadows can extend down to 50 m in some places. Coastal uses and threats varied in character and location. A municipality runoff point and drainage canal located close to the largest meadow were identified as the main threats to local seagrasses. 4. These low‐cost methods enhance our understanding of seagrass distribution in the northern GoA. They demonstrate a GIS‐based tool for assessing how environmental changes might affect the cover and state of seagrasses, improving efforts to conserve seagrass, and have particular relevance to seagrass mapping in developing countries and/or island nations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号