首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was conducted to evaluate the optimum dietary protein‐to‐energy (P/E) ratio in juvenile whiteleg shrimp, Litopenaeus vannamei. Six diets were formulated with two protein levels (30% and 35%) and three digestible energy levels (16, 17.5 and 19 kJ/g diet) at each protein level (30P16, 30P17.5, 30P19, 35P16, 35P17.5 and 35P19). Fifty shrimp averaging 0.97 ± 0.03g (Mean ± SD) were randomly distributed in biofloc tanks and fed one of the experimental diets. Weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of shrimp fed the 35P17.5 diet were significantly higher than those of shrimp fed 30P16, 30P17.5 and 30P19 diets (< .05). Results for non‐specific immune responses showed that diet 35P17.5 caused higher lysozyme activity in shrimp comparing to lower protein diets. Thiobarbituric acid reactive substances (TBARS) of plasma were lower for shrimp fed on diets consisting of higher protein and energy levels than shrimp fed on the 30P19 diet. Analyses of digestive enzyme activities showed higher trypsin activities for shrimp fed on 35P17.5 and 35P19 diets comparing to 30P16 and 30P17.5 diets. Also, hepatopancreatic lipase activity of shrimp fed 35P16, 35P17.5 and 35P19 diets were significantly higher than those of shrimp fed the other diets. In conclusion, based on the results for growth performance, biochemical parameters, immune responses, oxidative stress and enzyme activities, 35% protein and 17.5 kJ/g digestible energy (35P17.5) could be considered as the optimum protein‐to‐energy ratio in the diet of juvenile whiteleg shrimp reared in a biofloc system.  相似文献   

2.
A feeding trial was carried out to determine the effects of bioflocs on dietary protein requirement in juvenile whiteleg shrimp, Litopenaeus vannamei. Four bioflocs treatments (BFT) and one control group were managed: BFT fed diets 25% of crude protein (CP) (BFT‐25%), 30% CP (BFT‐30%), 35% CP (BFT‐35%) and 40% CP (BFT‐40%), and clear water control without bioflocs fed with 40% CP (CW‐40%). Triplicate groups of shrimp (initial body weight, 1.3 g) were fed one of the test diets at a ratio of 7% body weight daily for 8 weeks. At the end of the feeding trial, significantly (P < 0.05) higher weight gain and specific growth rate were obtained in shrimp fed BFT‐35% and BFT‐40% compared to BFT‐25% and BFT‐30%. Shrimp fed BFT‐35% exhibited the lowest feed conversion ratio. Significantly higher muscle nucleic acid indices were also recorded such as DNA content in BFT‐30%, RNA content in BFT‐35% and RNA/DNA ratio than that of shrimp fed control. Total protein level in the haemolymph of shrimp fed BFT‐40% was significantly higher than those of shrimp fed BFT‐25% and BFT‐30%. Therefore, the present results demonstrated that, when L. vannamei juveniles were reared in bioflocs‐based tanks, dietary protein level could be reduced from 40% to 35% without any adverse effect on shrimp growth performance, body composition and haemolymph characteristics. [Correction added on 20 May 2015, after first online publication: sentence modified to clarify the reduction in dietary protein level.].  相似文献   

3.
Probiotic bacteria are known to support the gut health of shrimp and thereby improve performance and production efficiency. Among other factors, the timing of probiotic application is of importance. Thus, this experiment (12‐week feeding trial followed by intramuscular Vibrio challenge) aimed to compare the effects of a multispecies probiotic feed supplement (AquaStar® Growout, 3 g/kg feed) in a continuous application with three different alternating application protocols on growth performance and immune parameters in whiteleg shrimp, Litopenaeus vannamei. Juvenile shrimp were stocked in a recirculating aquaculture system at a density of 15 shrimp/100 L and were fed an appropriate commercial diet throughout the whole trial. Tanks were randomly assigned to the treatments, and shrimp were fed one of the following five experimental treatments: T1: no probiotics (control), T2: probiotics continuously, T3: alternating 1 week probiotics, 1 week control, T4: alternating 2 weeks probiotics, 2 weeks control, or T5: alternating 2 weeks probiotics, 1 week control. While any AquaStar® Growout application significantly improved growth performance, only continuous application delayed mortality after the Vibrio challenge. Results suggest that the beneficial effects were most pronounced when AquaStar® Growout was fed either continuously or according to the T5 treatment.  相似文献   

4.
Biofloc (consortium of diverse microorganisms associated to suspending substrates) was developed from waste of shrimp Litopenaeus vannamei postlarvae culture under low salinity (5 g L?1) to provide an additional nutritious biomass and reduce fishmeal inclusion in feeds in a 28‐day indoor shrimp nursery trial conducted in 15 experimental containers (250 L stocked at 600 org m?3). Four experimental diets (isoproteic and isocaloric) containing different percentage of fishmeal: 0%, 10%, 20% and 30% substituted by vegetable meal mix (corn, sorghum and wheat) were formulated and elaborated. A control treatment consisted of a commercial feed. The main water quality parameters were monitored, and no significant differences were found among treatments. The growth and survival were similar among treatments. In general, digestive enzymatic activities showed differences being greater in the biofloc system compared with clear water. It was concluded that low‐salinity shrimp nursery could be successfully developed with minimum inclusion of fishmeal in feeds, without significant effect on production response. The adjustment of C : N ratio allowed the increase of microbial biomass in the bioflocs, which contributed to maintain good water quality, provide live food and enhance digestive enzymatic activity of cultured organisms.  相似文献   

5.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

6.
This trial was conducted to evaluate the effects of nucleotides on growth of whiteleg shrimp, Litopenaeus vannamei, and the survival and metabolic responses to ammonia stress test. Experimental diets were as follows: low fish meal diet (LFMD), and four LFMD test diets, each supplemented with 0.1% guanosine monophosphate (GMP), 0.1% inosine monophosphate (IMP), 0.1% mixture of GMP and IMP and 0.1% mixture of GMP, IMP, uridine monophosphate (UMP) and cytidine monophosphate (CMP). The shrimp specimens (initial body weight: 0.99 ± 0.01 g) were randomly allocated into five groups and fed four times daily for 8‐weeks. After the trial, final body weight was recorded and haemolymph was withdrawn for haematological analysis. The shrimp was then challenged with 70 mg/L ammonia (LC50) for 10 days. Survival and haemolymph of the shrimp were taken after exposure to ammonia. The highest growth performance was observed in the shrimp fed diet supplemented with GMP (p < .05), while survival was not influenced by the test diets in the feeding trial. In the ammonia challenge test, the highest survival was observed in the shrimp fed GMP supplemented diet compared to others. The plasma protein, glucose and cholesterol levels increased in all the treatments while triglycerides level decreased post challenge. Cortisol level recovered at day 10th after the challenge. Shrimps fed with nucleotides diets showed higher protein and glucose level compared to control groups post challenge. In general, nucleotides supplemented in the diet enhanced growth, improved stress resistance while modulating the haemolymph metabolites in L. vannamei under ammonia stress.  相似文献   

7.
This study evaluated the zootechnical performance and enzymatic activity of Litopenaeus vannamei reared at different feeding frequencies during the nursery phase in biofloc system. The experiment consisted of four treatments, corresponding to the feeding frequencies of one, two, three and four times a day. Twelve‐day postlarvae (PL12) were stocked in 12 circular tanks at a density of 3,000/m2 for 35 days. These tanks were connected to a recirculation system supplied by a matrix tank where biofloc management was carried out. Water quality remained within acceptable limits for the species over the experiment. Food frequencies had no influence on survival (88.5–92.7%) and feed conversion ratio (1.5–1.7), but the final mean weight (0.43–0.56 g) was significantly higher in shrimp fed three times a day. This fact is probably associated with amylase (14.58 U/mg) and trypsin (23.84 U/mg) activities, as well as the significant increase of chymotrypsin (11.74 U/mg) and lipase (1.27 U/mg) in shrimp of this treatment at the end of culture period. Feeding three times a day provided the highest enzymatic activity and the best zootechnical performance of L. vannamei during the nursery phase in biofloc system.  相似文献   

8.
9.
10.
The objective of the study was to examine the effects of biofloc technology on the muscle proteome of Litopenaeus vannamei. Two biofloc treatments and one control were compared: biofloc‐based tanks under zero‐water exchange fed with 150 g/kg crude protein (BF15), or with 250 g/kg crude protein (BF25) diets, and clear water tanks with 50% of daily water exchange stocked with shrimp fed with similar amount of a 250 g/kg crude protein diet, referred to as control. The shrimp (5.28 ± 0.42 g) were divided into the 300‐L fibreglass tanks (water volume of 200 L) at a density of 35 shrimp per tank and were cultured for 35 days. The biofloc groups displayed better growth and survival compared to the control. The muscle tissue from the control and BF25 groups was subjected to proteomic analysis. Lactate dehydrogenase, enolase, arginine kinase, mitochondrial ATP synthase subunit alpha, mitochondrial ATPase inhibitor factor 1 precursor, serpin 3 and myeloid differentiation factor 88 had an increased abundance in the BF25 group, while myosin heavy chain type 1 and myosin heavy chain type 2 showed a decreased abundance. The results indicate that biofloc technology could alter the expression of proteins involved in structure, metabolism and immune status of cultured shrimp.  相似文献   

11.
A 30‐day experiment was conducted to evaluate inorganic nitrogen control, biofloc composition and shrimp performance in zero‐exchange culture tanks for juvenile L. vannamei offered a 35% (P35) or 25% (P25) crude protein feed, each feed supplemented with additional carbohydrate to increase the C/N ratio to 20:1 (CN20) or 15:1 (CN15). Sucrose was used as a carbohydrate to manipulate the two C/N ratios based on the carbon and nitrogen content of both the feeds and sucrose. The four treatments were referred to as: P35 + CN20, P35 + CN15, P25 + CN20 and P25 + CN15. Each treatment consisted of four replicate tanks (125 L), each stocked with 28 shrimp (equivalent to 224 shrimp m?3). Bioflocs formed and developed based on initial inoculation in all four treatments; and monitored water quality parameters were maintained within acceptable ranges for shrimp culture throughout the experiment. No significant effects (> 0.05) of dietary protein level, C/N ratio or their interaction were observed on biofloc development (BFV, TSS and BFVI) and inorganic nitrogen (TAN, NO2?‐N and NO3?‐N) concentrations. At the end of the experiment, proximate analysis of the bioflocs collected from the four treatments showed crude protein levels of 21.3% ~ 32.1%, crude lipid levels of 1.6% ~ 2.8% and ash levels of 43.4% ~ 61.4%. Extracellular protease and amylase activities of the bioflocs were 9.9 ~ 14.4 U g?1 TSS and 293.5 ~ 403.8 U g?1 TSS respectively. Biofloc composition and enzyme activity were both affected by dietary protein level (< 0.01) and C/N ratio (< 0.05). Survival, per cent weight gain and protein efficiency ratio of shrimp were not affected (> 0.05) by dietary protein level, C/N ratio or their interaction; however, the feed conversion ratios were significantly lower (< 0.05) in treatments with high dietary protein (P35) compared with those in treatments with low dietary protein (P25). The results from this study demonstrate that dietary protein level and C/N ratio manipulation can have important implications for water quality, biofloc composition and shrimp performance in intensive, zero‐exchange biofloc‐based culture systems.  相似文献   

12.
The objective of this study was to evaluate the influence of different dietary lipid and fatty acids on the nutritional value of bioflocs used as a feed, as well as shrimp performance and health. A total of 1800 Litopenaeus vannamei juveniles (2.87 ± 0.01 g) were cultured in biofloc technology, with a density of 200 shrimp m?2, and fed with three isoproteic experimental diets at different lipid levels (85 g kg?1, 95 g kg?1 and 105 g kg?1); each treatment was performed in triplicate. After 61 days, no significant difference was observed (> 0.05) among the water quality parameters. For the shrimp performance, significant difference was observed (= 0.011) among the values of survival, where treatments with lower lipid levels had higher survival (92.5 ± 3.5% and 91.0 ± 2.5%). Although there are significant differences in survival, no significant differences in the total haemocytes count (THC) were observed. For other growth performance, no differences were observed (> 0.05). A positive correlation (= 0.75) has been observed between the dietary oleic acid and bioflocs. The bioflocs showed ‘long‐chain’ polyunsaturated fat acids (lcPUFA), especially arachidonic acid. The shrimp showed similar growth and stayed healthy at the end of the experimental period.  相似文献   

13.
The aim of this study was to evaluate the effect of light limitation on the water quality, bacterial counts and performance of Litopenaeus vannamei postlarvae reared with biofloc at low salinity (≈9 g L?1). Two treatments were designed: T1 = culture with natural sunlight and T2 = culture in darkness. After 28 days, in both treatments, the final weight of shrimp was over 0.6 g with a specific growth rate over 7.4% d?1, and a survival rate over 70%. In both treatments, Vibrio sp. concentration presented low values (culture with natural sunlight = 0.1 to 9.9 × 102 CFU mL?1, culture in darkness = 0.4 to 11.7 × 102 CFU mL?1) and Bacillus sp. had high values (culture with natural sunlight = 0.7 to 66.0 × 104 CFU mL?1, culture in darkness = 0.7 to 65.8 × 104 CFU mL?1). All water quality parameters remained within the ranges suitable for shrimp culture, except for alkalinity during the first stage of the study. Although in some sampling periods some significant differences were found in bacterial counts and water quality parameters, shrimp productive performance under culture with biofloc at low salinity was not affected significantly by light limitation.  相似文献   

14.
A 60‐day indoor experiment was conducted to study the effect of dietary supplementation of biofloc on metabolic enzyme activities and immune responses in Penaeus monodon juveniles. Biofloc developed in indoor fibreglass‐reinforced plastic (FRP) tanks (1000 L) was used as dietary supplement in P. monodon (2.90 ± 0.10 g) reared in 1000‐L FRP tanks. Graded level of dried biofloc was included in shrimp basal diets, 0% (control, B0), 4% (B4), 8% (B8) and 12% (B12). The level of metabolic enzymes like malate dehydrogenase (MDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was not significantly different with control up to 8% dietary supplementation. A higher level of total haemocyte count (THC) was noticed in B8 (22.16 ± 2.17 × 106 cells mL?1) and B4 (21.11 ± 0.56 × 106 cells mL?1) compared with control, C (14.61 ± 2.74 × 106 cells mL?1). Biofloc‐supplemented groups recorded significantly higher (< 0.05) serum SOD and catalase activity (P < 0.01) in comparison with control. The groups fed with 4% dietary biofloc supplement recorded highest relative percentage survival (RPS), 45% after challenge with Vibrio harveyi followed by 36% and 27% RPS in B8 and B12 groups. Based on these results, it can be concluded that supplementation of biofloc even at 4% level in the feed improves immune responses and metabolic activities in black tiger shrimp juveniles.  相似文献   

15.
An experiment was conducted for 120 days to evaluate optimum dietary lipid requirements for gonadal maturation of Cyprinus carpio fed with varying dietary lipid levels under biofloc‐based systems (BFT). About 180 fingerlings (22 g ± 0.05) were randomly distributed in 15 tanks (300 L) at the rate of 48 no./m2 and fed with varying lipid levels (T1—4% lipid with BFT, T2—6% lipid with BFT, T3—8% lipid with BFT, T4—10% lipid with BFT, control—10% lipid without BFT). The C/N ratio of 20:1 was maintained using tapioca flour as carbon source. Biofloc units supplemented with 8% dietary lipid (T3) showed advanced maturation in terms of absolute fecundity (9,913 ± 7.62), relative fecundity (229.0/g ± 11.92), gonadosomatic index (24.47% ± 1.27), hepatosomatic index (1.97% ± 0.07), condition factor (0.02 g/cm3 ± 0.00) compared with control (clear water with 10% lipid) (p < .05). Histological observations of gonads also revealed that the biofloc groups with supplementation of 8% dietary lipid promoted gonadal maturation for female oocyte and 6% dietary lipid promoted maturation for males, compared with control (clear water with 10% lipid). The results obtained in this experiment elucidate that the biofloc improves gonadal maturation of common carp broodstock at a dietary supplementation with 8% lipid compared with conventional system of broodstock management.  相似文献   

16.
This study evaluated the potential for the replacement of fishmeal (FM) by biofloc meal (BM) in the diet of Litopenaeus vannamei postlarvae. Four isonitrogenous (437.42 g kg?1) and isocaloric (19.84 kJ g?1) diets were formulated, in which FM was replaced with BM at 0% (T0), 7.5% (T7.5), 15% (T15) and 30% (T30). A commercial diet (CD) was used as reference. The study was conducted over 42 days in 50 L tanks connected to a water recirculation system. All tanks were stocked with three postlarvae (initial weight 0.0023 g) per litre. Shrimp survival, weight gain (WG), final weight (FW), specific growth rate (SGR) and protein efficiency ratio (PER) were measured. Survival rates were high (>91.1%) in all treatments. As the T30 treatment returned a significantly (<0.05) better performance in WG, FW, SGR and PER than all other treatments, partial replacement of FM with BM does not appear to affect productivity. In fact, a regression analysis indicated that a FM to BM replacement level of over 20% may actually improve shrimp growth. In addition to providing a cost‐effective alternative ingredient for L. vannamei postlarvae diets, the production of meal also represents a more sustainable way of disposing of the excess of biofloc produced by BFT systems.  相似文献   

17.
To evaluate effect of substrate integration in biofloc based system, a 52‐day growth experiment was conducted using black tiger shrimp, Penaeus monodon juveniles (3.32 ± 0.07 g). The factorial design consisted of floc, F (with or without) as first factor and substrate (bamboo mat, B; nylon mesh, N; and without substrate) as second factor. This resulted six treatments; F + B, F + N, F, B, N and a control without biofloc and substrate. Shrimps were stocked at 110 nos. m–3 in Fibre Reinforced Plastic (FRP) tanks and, rice flour was used as carbon source in biofloc based treatments. Incorporation of nylon mesh and bamboo mat in biofloc system trapped 31.3%–38.6% and 8.5%–13.5% total suspended solids respectively and reduced bottom solid deposition. Among the substrate based groups, significantly better development of biofilm with higher microbial population noticed in F + B compared with nylon mesh. Similarly, significantly higher final growth (p < 0.01) was recorded in F + B system followed by F + N while no significant difference in body weight recorded among floc, F or substrate based groups (B, N). Biofloc and substrate integration (F + B and F + N) resulted significantly (p < 0.01) lower feed conversion ratio compared to control and floc. Incoporation of bamboo substrate in biofloc, (F + B) improved shrimp immune responses through higher hemocyte counts and prophenoloxidase activity compared to other treatments. The study revealed that integration of substrate in the biofloc system improved growth performance, FCR and immune parameters in shrimp by trapping the suspended biofloc particles, better water quality parameters, enhanced biofilm growth and provision of quality natural food.  相似文献   

18.
Effect of different carbon sources on nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in biofloc system was investigated. Shrimp postlarvae (98.47 ± 8.6 mg) were fed for 32 days in tanks with water volume of 130 L and density of 1 individual L?1. One control treatment and four biofloc treatments (BFT1, BFT2, BFT3 and BFT4) with adding different carbon sources including molasses, starch, wheat flour and mixture of them, respectively, were considered at equal weight ratios. According to the results, salinity, dissolved oxygen and pH were not significantly different among the biofloc treatments (P > 0.05). Maximum pH (8.27) and maximum dissolved oxygen (6.35 mg L?1) were recorded in the control. Maximum (0.43 mg L?1) and minimum (0.09 mg L?1) ammonia were recorded in the control and BFT2, respectively (P < 0.05). Using simple carbohydrates (molasses and starch) lowered the ammonia concentration significantly. The highest increase in body weight (1640.43 ± 231.28 mg), growth rate, specific growth rate (8.97 ± 0.42% per day) and biomass (190.29 ± 26.83 mg) were found in BFT1 and the highest survival (90 ± 0.77%) was found in BFT4. The highest feed conversion (1.52 ± 0.23) and the lowest feed efficiency (66.81 ± 7.95) were observed in the control (P < 0.05). The proximate composition analysis revealed an increase in lipid and ash in biofloc treatments. Results indicated that using biofloc technology with zero‐water exchange system and adding carbon sources could help to recycle waste and improve the water quality. Moreover, the type of carbonaceous organic matter as a substrate for heterotrophic bacteria would be effective in degradation and metabolization of ammonia and nitrite.  相似文献   

19.
Feeding restriction is a strategy in shrimp farming management that may promote compensatory growth after feeding is re‐established. This study aims to evaluate the effects of two feeding restriction regimens on the compensatory growth and digestive enzymes activity of Litopenaeus vannamei reared in biofloc system. Juvenile shrimp (0.46 ± 0.18 g) were stocked (320 individuals/m3) in 310 L tanks. The experiment comprised two phases: (a) Feeding Restriction (30 days) when shrimp were submitted to three feeding regimes, Control (fed daily), R1F1 (repetitively fasted one day and fed one day) and R2F1 (repetitively fasted 2 days and fed 1 day); and (b) Refeeding (28 days) when shrimp were fed daily. In the restriction phase, shrimp growth and digestive enzyme activities were reduced in R2F1 and R1F1. However, during the refeeding phase, enzyme activities and feed conversion improve significantly in R2F1 and R1F1. Control group attained higher final weight, but its final biomass was similar to R1F1. Litopenaeus vannamei exhibited partial compensatory growth, probably due to improved feed conversion efficiency driven by increased enzyme activity. It is possible to reduce feeding by 50% (R1F1) in biofloc systems for 28 days, without compromising the biomass produced at the end of a 30‐day refeeding period.  相似文献   

20.
This experiment was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid (FA) composition of juvenile shrimp, Litopenaeus vannamei. Six isoenergetic and isonitrogenous semi‐purified diets containing casein, solvent‐extracted soybean meal and gelatin as protein sources, were supplemented with 60 g kg−1 of lipid sources. The lipid sources included: pollack fish oil (PO), pork lard (PL), soy oil (SO), peanut oil (PN), rapeseed oil (RO) and a mixture of pollack fish oil and soy oil (POSO 1 : 1 w/w). Each diet was fed to juvenile shrimp (0.10 g average weight) four times daily in triplicate tanks to apparent satiation (feeding ratio was about 8%) for 8 weeks. At the end of the experiment, weight gain, specific growth rate and protein efficiency ratio were significantly higher for shrimp fed the diet containing PO and the POSO mixture oil than the other lipid sources. The nutritional values of SO, RO, PN and PL were similar. Shrimp fed on PO, mixture oil of POSO and SO had better survival rates than the other lipid sources, and shrimp fed the PL had the lowest survival rate. There were significant differences in lipid contents of whole body and hepatopancreas amongst the dietary treatments; however, lipid contents of tail muscle were not significantly affected by the dietary lipid sources. Shrimps fed POSO diet had higher protein content in whole body than those fed the other lipid sources, and shrimp fed PO diet had highest crude protein content of the tail muscle. A high correlation was found between dietary FA composition and FA composition of whole shrimp. FA composition of the whole body was generally affected by dietary lipid sources, especially dietary unsaturated FA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号