首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the histidine requirement of fingerling Catla catla (3.65 ± 0.15 cm; 0.65 ± 0.36 g), six casein‐gelatin based diets (33% CP; 13.58 kJ g?1 DE) containing graded levels of L‐histidine (0.25%, 0.39%, 0.53%, 0.67%, 0.83%, 0.96% of the dry diet) were fed near to satiation thrice a day for 12 weeks. Maximum absolute weight gain (AWG; 8.63 g fish?1), protein gain (PG; 1.45 g fish?1), histidine gain (HG, 48.19 mg fish?1), RNA/DNA ratio (4.15), best feed conversion ratio (FCR; 1.31), highest haemoglobin (Hb, 9.61 g dL?1), RBCs (2.84 × 106 mm?3) and haematocrit (Ht, 30.12%) were recorded in fish fed diet containing 0.67% histidine. However, broken‐line regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs against dietary histidine reflected the histidine requirement at 0.65%, 0.64%, 0.63%, 0.68%, 0.63%, 0.66%, 0.68% and 0.65% dry diet respectively. Carcass protein was found to improve significantly (P < 0.05) from 13.36% to 16.42% with the increase in dietary histidine from 0.25% to 0.67%. Based on regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs, it is recommended that the diet for fingerling catla should contain histidine in the range of 0.63–0.68% dry diet, equivalent to 1.91–2.06% of the dietary protein for optimum growth, feed utilization, blood profile and carcass composition.  相似文献   

2.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

3.
A 12-week feeding trial was conducted to determine the dietary valine requirement of fingerling Catla catla (3.50 ± 0.15 cm, 0.63 ± 0.04 g). Seven casein gelatin-based diets (33% crude protein; 3.34 kcal/g digestible energy) containing graded levels of valine (0.51%, 0.69%, 0.91%, 1.12%, 1.31%, 1.49%, 1.71% dry diet) were fed to triplicate groups of fish to apparent satiation at 08:00, 12:30, and 17:30 h. Absolute weight gain (AWG), feed conversion ratio (FCR), specific growth rate (SGR%), protein efficiency ratio (PER), protein productive value (PPV), valine retention efficiency (VRE), valine gain (VG), energy retention efficiency (ERE), and carcass protein improved significantly (P < 0.05) with the increasing concentrations of dietary valine from 0.51% to 1.12%. Quadratic regression analysis of AWG, PPV, DPD, VG, ERE, and carcass protein at 95% maximum (Y95%max) response against varying levels of dietary valine yielded the requirement at 1.04%, 1.03%, 1.05%, 1.04%, 1.01%, and 0.98% of dry diet, respectively. It is recommended that inclusion of valine at 1.02% of dry diet, corresponding to 3.09% of dietary protein, is optimum in formulating valine-balanced feeds for fingerling C. catla.  相似文献   

4.
Two separate 12 weeks feeding trials were performed to quantify the total sulphur amino acid (TSAA) requirement (experiment I) and cysteine replacement value for methionine (experiment II) of fingerling Catla catla. In experiment I, six casein–gelatin based (33% crude protein; 16.72 kJ g?1 gross energy) diets with graded levels of TSAA (0.56%, 0.81%, 1.06%, 1.31%, 1.56%, 1.81% dry diet) were fed to triplicate groups of fish (3.55 ± 0.06 cm; 0.65 ± 0.02 g) near to satiation. The TSAA requirement was determined by quadratic regression analysis of absolute weight gain (AWG), protein efficiency ratio (PER), feed efficiency (FE), protein gain (PG) and TSAA gain (TSAAG) against dietary TSAA concentrations at 95% maximum response. Above analysis revealed that inclusion of TSAA at 1.28% dry diet (1.22% methionine + 0.06% cysteine), corresponding to 3.87% of dietary protein is optimum. In experiment II, to determine the replacement value of cysteine for methionine, six diets containing 1.28% TSAA determined in experiment I with different ratios of l ‐methionine and l ‐cysteine (80:20, 70:30, 60:40, 50:50, 40:60, 30:70) on equimolar sulphur basis were fed to fish (3.65 ± 0.08 cm; 0.67 ± 0.04 g). Broken‐line regression analysis of AWG, PER, FE, PG and TSAAG against varying methionine to cysteine ratios yielded the optimum cysteine replacement value at 40.3%. Based on above analysis, it is recommended that inclusion of 1.28% dietary TSAA, corresponding to 3.87% of dietary protein is optimum of which 40.3% could be spared by cysteine. Data generated during this study would be useful in formulating TSAA balanced, cost‐effective feeds for the intensive culture of this fish.  相似文献   

5.
A 12‐week feeding trial was conducted in eighteen 70 L indoor polyvinyl circular troughs provided with a water flow‐through system (1–1.5 L min?1) at 28 ± 1 °C to evaluate the dietary tryptophan requirement of fingerling Catla catla (3.45 ± 0.24 cm; 0.60 ± 0.13 g). Six casein‐gelatin‐based amino acid test diets (330 g kg?1 crude protein; 13.6 kJ g?1 digestible energy) containing graded levels of L‐tryptophan (1.0, 1.4, 1.9, 2.3, 2.8, 3.4 g kg?1 dry diet) were fed to triplicate groups of fish near to satiation at 08:00, 12:30 and 17:30 h. Absolute weight gain, feed conversion ratio, protein gain, RNA/DNA ratio, hepatosomatic index, viscerosomatic index, condition factor and haematological indices improved with the increasing levels of tryptophan from 1.0 to 2.3 g kg?1 of dry diet. Significantly higher carcass protein was obtained at 2.3 g tryptophan per kilogram of the dry diet. Exponential analysis of absolute weight gain, feed conversion ratio, protein gain and RNA/DNA ratio against dietary tryptophan levels at 95% maximum and minimum responses displayed the tryptophan requirement at 2.5, 2.3, 2.5 and 2.1 g kg?1 dry diet, respectively. Inclusion of dietary tryptophan in the range of 2.1–2.5 g kg?1 dry diet, equivalent to 6.4–7.6 g kg?1 dietary protein, is recommended in formulating tryptophan‐balanced feed for the culture of this fish species.  相似文献   

6.
A 120‐day feeding trial was conducted to determine the dietary requirement of phosphorus for Indian major carp, catla (Catla catla) fingerlings. Four hundred and eighty fingerlings (mean body weight: 4.23±0.87 g) were randomly distributed among eight treatment groups with three replicates each. Eight isonitrogenous and isocaloric semi‐purified diets (crude protein: 35% and crude lipid: 8.5%) were formulated with graded levels of phosphorus using KH2PO4 (T1: control, 0.1%; T2: 0.3%; T3: 0.5%; T4: 0.7%; T5: 0.9%; T6: 1.1%; T7: 1.3%; T8: 1.5%) and fed to the respective groups. Twenty fish were stocked in 150 L plastic tanks and fed to apparent satiation twice a day. Specific growth rate (SGR) significantly (P<0.05) increased with increasing dietary phosphorus concentration from 0.73% to 1.27%, after which there was a slight decline in growth at 1.1% available phosphorus (aP) and remained constant thereafter. The quadratic broken‐line model based on growth was Y=317.5?581(0.64?x) (0.64?x); R2=0.73. Moisture and crude protein contents of whole body were similar among all the treatments. However, the ether extract in T1 group was significantly (P<0.05) higher than all the other treatments. The whole‐body phosphorus content increased significantly (P<0.05) with an increase in phosphorus in the diets. The one‐slope broken‐line model based on whole‐body phosphorus concentration was Y=4.07?1.63 (0.71?x); R2=0.48. The one‐slope broken‐line model for non‐faecal phosphorus excretion as inorganic phosphorus (Pi) for 24 h revealed a trend of Y=12.67+73.96 (x?0.6); R2=0.81. Minimum aP requirements based on weight gain (%), whole‐body phosphorus content and phosphorus excretion were 0.64%, 0.71% and 0.6%, respectively. Hence, the dietary aP requirement of catla fingerlings ranges from 0.6% to 0.71%.  相似文献   

7.
A 12‐week feeding trial was conducted to determine the dietary threonine requirement of fingerling Indian major carp, Catla catla (3.35 ± 0.11 cm; 0.59 ± 0.06 g). Six casein‐gelatin based (33% crude protein; 3.23 kcal g?1 digestible energy) amino acid test diets with graded levels of analysed threonine (0.74%, 0.96%, 1.21%, 1.48%, 1.72% and 1.93% dry diet) were fed to satiation to triplicate groups of fish. Absolute weight gain (g per fish), feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio and carcass protein significantly improved with the increase in dietary threonine and peaked at 1.48% of the dry diet. Haematological indices were also found to be best in fish fed at 1.48% threonine diet. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio, carcass protein, haemoglobin (g dL?1), haematocrit (%) and RBCs (106 × mm?3) at 95% of maximum and minimum response exhibited the threonine requirement of fingerling C. catla between 1.35% and 1.48% dry diet, corresponding to 4.09–4.48% dietary protein. Present finding would be useful in formulating threonine‐balanced feeds for the intensive culture of C. catla.  相似文献   

8.
A sub‐lethal nitrite toxicity trial was conducted using static conditions for a period of 96 h with fingerlings of Catla catla (21.4±3.6 g). Fingerlings were exposed to five concentrations of nitrite, that is, 1, 2, 4, 8 and 10.4 mg L?1 and a nitrite‐free control to study changes in haematological parameters. Nitrite caused an increase in immature erythrocyte population (7–24%) in lower concentrations (0–4 mg L?1) at 6 h while they were absent in higher concentrations. The total erythrocyte count was reduced at 6 h followed by an increase at 12 h with further reduction up to 96 h in all concentrations of nitrite. The 96‐h exposure resulted in 21.2–31.8% reduction in erythrocyte population in 1–10.4 mg L?1 nitrite. The haemoglobin content decreased progressively with increasing nitrite concentrations as well as exposure periods. Total leukocyte count decreased initially at 6 h in all treatments followed by an increase after 12 h, signifying development of a protective response of the body to nitrite stress. Blood glucose decreased initially up to 24 h followed by an increase through 96 h. Serum protein level decreased continuously with increasing exposure period. The study revealed that exposure to nitrite caused changes in almost all the haematological parameters in the fingerlings depending on the concentration as well as exposure period. Nitrite being one of the important inorganic nutrients often recorded at higher levels in intensively cultured ponds, the present study highlights its adverse impact on fish and stressed the need for the management of this nutrient in culture ponds.  相似文献   

9.
An 8‐week growth trial was conducted to determine the dietary histidine requirement of the Indian major carp, Cirrhinus mrigala fingerling (length 4.22 ± 0.45 cm; weight 0.61 ± 0.08 g; n = 40). Isonitrogenous (400 g kg?1 crude protein) and isoenergetic (17.90 kJ g?1 gross energy) diets with graded levels of l ‐histidine (2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 g kg?1 dry diet) were formulated using casein and gelatin as a source of intact protein, supplemented with l ‐crystalline amino acids. Twenty fish were randomly stocked in 70‐L indoor polyvinyl circular fish tank (water volume 55‐L, water exchange rate 1–1.5 L min?1) and fed experimental diets at the rate of 5% of their body weight/day divided over two feedings at 08:00 and 16:00 h. Maximum live weight gain (295%), best feed conversion ratio (FCR) (1.48) and protein efficiency ratio (PER) (1.69) occurred at 7.5 g kg?1 of dietary histidine level. When live weight gain, FCR and PER data were analysed using second‐degree polynomial regression, the break points indicated histidine requirements at 9.4, 8.6 and 8.5 g kg?1 of dry diet respectively. Significantly (P < 0.05) higher whole body protein and low moisture values were recorded at 7.5 g kg?1 histidine level. Body fat increased significantly (P < 0.05) with increasing histidine levels. However, at 7.5 and 10 g kg?1 histidine diets body fat did not differ (P > 0.05) to each other. Ash content of fish fed diets containing various levels of histidine did not differ except at 2.5 and 5.0 g kg?1 inclusion levels where significantly (P < 0.05) higher ash was recorded. Protein deposition was also found to be significantly (P < 0.05) higher in the 7.5 g kg?1 histidine diet. Based on the polynomial regression analysis of FCR and PER data, it is recommended that the diet for fingerling C. mrigala should contain histidine at 8.5 g kg?1 of dry diet, corresponding to 21.25 g kg?1 of dietary protein for optimum growth and efficient utilization of feed.  相似文献   

10.
An 8-week feeding experiment was conducted to evaluate the dietary leucine requirement of fingerling Indian major carp, Labeo rohita (3.50±0.04 cm; 0.40±0.02 g) using amino acid test diets (40% crude protein; 17.90 kJ g−1 gross energy) containing casein and gelatin as intact protein sources and l -crystalline amino acids. Growth performance and biochemical parameters were assessed by feeding six amino acid test diets supplemented with graded concentrations of leucine (0.75, 1.0, 1.25, 1.50, 1.75 and 2.0 g per 100 g) to triplicate groups of fingerlings to apparent satiation divided over two feedings at 07:00 and 17:30 hours. Performance of the fish was evaluated on the basis of live weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER) and body protein deposition (BPD) data. Maximum live weight gain (315%), best FCR (1.35), highest PER (1.86) and BPD (33.9) were recorded at 1.50 g per 100 g dietary leucine. Statistical analysis of live weight gain, FCR, PER and BPD data reflected significant differences (P<0.05) among treatments. Live weight gain, FCR, PER and BPD data were also analysed using second-degree polynomial regression analysis to obtain more accurate leucine requirement estimate which was found to be at 1.57, 1.55, 1.52 and 1.50 g per 100 g of dry diet, corresponding to 3.92, 3.87, 3.80 and 3.75 g per 100 g of dietary protein respectively. Based on the quadratic regression analysis of the live weight gain, FCR, PER and BPD data, the optimum requirement of fingerling L. rohita for leucine is estimated to be in the range of 1.50–1.57 g per 100 g of the dry diet, corresponding to 3.75–3.92 g per 100 g of dietary protein.  相似文献   

11.
An 8‐week feeding experiment was conducted in a water flow‐through system (26–28 °C) to determine the dietary threonine requirement of fingerling Labeo rohita (3.90±0.03 cm; 0.58±0.02 g). Growth, feed utilization and body composition of fish fed test diets (40% crude protein; 17.9 kJ g?1 gross energy) with graded levels of l ‐threonine (0.75%, 1.0%, 1.25%, 1.50%, 1.75% and 2.0% dry diet) to apparent satiation were response variables used to assess threonine adequacy. Diets were made isonitrogenous and isoenergetic by adjusting the levels of glycine and dextrin. The amino acid profiles of the test diets were formulated to that of 40% whole chicken egg protein except for threonine. The performance of fish fed experimental diets was evaluated using calculated values for weight gain (g fish?1), feed conversion ratio (FCR), protein efficiency ratio (PER) and protein productive value (PPV) data. Maximum weight gain (g fish?1) (1.79), lowest FCR (1.39), highest PER (1.76) and PPV (0.33) were recorded at 1.50 g per 100 g dietary threonine. Statistical analysis of weight gain, FCR, PER and PPV data reflected significant differences (P<0.05) among treatments. Except for reduced growth performance in fish fed threonine‐deficient diets, no deficiency signs were noted. Weight gain, FCR, PER and PPV data were also analysed using second‐degree polynomial regression analysis to obtain a more accurate threonine requirement estimate, which was found, using each response variable, to be at 1.70, 1.63, 1.65 and 1.51 g per 100 g of dry diet, corresponding to 4.2, 4.07, 4.12 and 3.77 g per 100 g of dietary protein respectively. Based on the second‐degree polynomial regression analysis of the live weight gain, FCR, PER and PPV data, the optimum dietary level of threonine for fingerling L. rohita was found to be in the range of 1.51–1.70 g per 100 g of the dry diet, corresponding to 3.77–4.2 g per 100 g of dietary protein.  相似文献   

12.
An 8‐week feeding experiment was conducted to quantify the dietary isoleucine requirement of fingerling Indian major carp, Labeo rohita (3.50 ± 0.04 cm; 0.40 ± 0.02 g) using amino acid test diets (400 g kg−1 crude protein; 17.90 kJ g−1 gross energy) containing casein, gelatin and l ‐crystalline amino acids. Six dietary treatments supplemented with graded levels of isoleucine (7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 g kg−1), in gradations of 2.5 g kg−1 diet, were fed to triplicate groups of fingerlings to apparent satiation divided over two feedings at 07:00 and 17:30 h. Performance of the fish was evaluated on the basis of live weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR) and protein productive value (PPV). Statistical analysis of live weight gain, FCR, PER, SGR and PPV reflected significant differences among treatments. Live weight gain and conversion efficiencies were best with isoleucine at 15.0 g kg−1 of diet. Live weight gain, FCR, PER, SGR and PPV data were also analysed using second‐degree polynomial regression analysis to obtain more accurate isoleucine requirement estimate which was found to be at 15.9, 15.3, 15.2, 15.8 and 15.7 g kg−1 of dry diet, corresponding to 39.8, 38.3, 38.0, 39.5 and 39.3 g kg−1 of dietary protein respectively. Based on the quadratic regression analysis of the live weight gain, FCR, PER, SGR and PPV, the optimum level of isoleucine for fingerling L. rohita is in the range of 15.2–15.9 g kg−1 of dry diet, corresponding to 38.0–39.8 g kg−1 of dietary protein. Maximum body protein, minimum moisture and fat were noted at 15.0 g kg−1 of dietary isoleucine while the body ash remained constant among all the treatment levels. No mortality was recorded during the duration of the experiment.  相似文献   

13.
Two new cell lines, designated RE and CB, were derived from the eye of rohu, Labeo rohita , and the brain of catla, Catla catla , respectively. The cell lines were maintained in Leibovitz's L-15 supplemented with 20% foetal bovine serum. The RE cell line was sub-cultured for more than 70 passages and the CB cell line for more than 35 passages. The RE cells are rounded and consist predominantly of epithelial cells. The CB cell line consists of predominantly fibroblastic-like cells. Both cell lines are able to grow at temperatures between 25 and 32 °C with an optimum of 28 °C. The growth rate of the cells increased as the foetal bovine serum concentration increased from 2% to 20% at 28 °C, with optimum growth at concentrations of 15% or 20% foetal bovine serum. The cells were successfully cryopreserved and revived at different passage levels. The cell lines were not susceptible to four marine fish viruses. Extracellular products from Aeromonas sp . were toxic to the cell lines. When the cells were transfected with plasmid eukaryotic green fluorescent protein (pEGFP [Clontech, Carlsbad, CA, USA]) vector DNA, a significant fluorescent signal was observed suggesting that these cell lines could be a useful tool for transgenic and genetic manipulation studies. Polymerase chain reaction amplification of mitochondrial 12S rRNA from rohu and catla confirmed that the cell lines originated from these fish species. The cell lines were further characterized by immunocytochemistry using confocal laser scanning microscopy.  相似文献   

14.
Indian major carp fingerling, Cirrhinus mrigala (3.85±0.75 cm, 0.52±0.21 g), were fed isonitrogenous and isocaloric diets (40% crude protein, 4.28 kcal g?1, gross energy) containing casein, gelatin and crystalline amino acids with graded levels of l ‐threonine (1.00, 1.25, 1.50, 1.75, 2.00 and 2.25 g 100 g?1, dry diet) to determine the dietary threonine requirement. The feeding trial was conducted in triplicate for 8 weeks. Diets were fed twice a day at 08:00 and 16:00 hours at 5% body weight day?1. The ration size and feeding schedule were worked out before the start of the feeding trial. Highest weight gain (304%) and best feed conversion ratio (1.43) were evident in fish fed diet containing 1.75% dietary threonine. Second‐degree polynomial regression analysis of weight gain, feed conversion ratio and protein efficiency ratio data indicated the dietary threonine requirement to be at 1.84%, 1.81% and 1.78%, respectively, corresponding to 4.60%, 4.52% and 4.45% of dietary protein. Minimum carcass moisture, fat and maximum carcass protein were evident in fish fed 1.75% threonine level. However, ash content did not affect body composition, except the 1.00% threonine level, which showed a significantly higher ash content value. Based on the above results, it is recommended that the diet for C. mrigala should contain threonine at 1.80 g 100 g?1 dry diet, corresponding to 4.50 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

15.
An 8‐week feeding trial was conducted to evaluate the effects of dietary tryptophan concentration on weight gain and feed efficiencies of fingerling Indian major carp, Cirrhinus mrigala. Six isonitrogenous (40% crude protein) and isocaloric (17.90 kJ g?1) amino acid test diets containing casein, gelatin and l ‐crystalline amino acids with graded levels of l ‐tryptophan (0.06, 0.16, 0.26, 0.36, 0.46 and 0.56 g 100 g?1 dry diet) were formulated. Fish (4.25±0.30 cm, 0.62±0.02 g) were randomly stocked in triplicate groups in 70 L (water volume 55 L) flow‐through (1–1.5 L min?1) indoor circular tanks and fed experimental diets at 5% of their body weight/day in two feedings at 08:00 and 16:00 hours. Maximum live weight gain (277%), lowest feed conversion ratio (FCR) (1.50) and highest protein efficiency ratio (PER) (1.66) were measured at 0.36% dietary tryptophan. The relationship between dietary tryptophan levels and weight gain, FCR and PER data were described using second‐degree polynomial regression analysis indicating the tryptophan requirement at 0.42, 0.39 and 0.38 g 100 g?1 of dry diet respectively. Whole body moisture decreased with increasing tryptophan up to 0.36%. Significantly (P<0.05) higher protein content was evident in fish fed diet containing 0.36% tryptophan. Body fat increased significantly (P<0.05) in fish fed with different tryptophan concentrations except those fed 0.36% tryptophan where a significantly lower fat content was noted. Significantly (P<0.05) higher ash content was reported at 0.06% and 0.16% tryptophan levels. Survival was 100% in fish fed all the diets except those fed 0.06% tryptophan. Based on the results, diets for fingerling C. mrigala should contain tryptophan at 0.38 g 100 g?1 dry diet, corresponding to 0.95 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

16.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

17.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

18.
Seven casein gelatin-based diets containing 450 g/kg CP and 18.39 kJ/g GE with different levels of pyridoxine (0, 2, 4, 6, 8, 10, and 12 mg/kg diet) were fed to fingerling Channa punctatus (4.66 ± 0.46 g) for 12 weeks to determine pyridoxine requirement. Highest absolute weight gain (AWG; 25.81 g/fish, P < 0.05), protein retention (PRE; 23.69%, P < 0.05), energy retention efficiencies (ERE; 69.63%, P < 0.05), and minimum feed conversion ratio (FCR; 1.48) were noted at 8 mg pyridoxine/kg diet. However, liver pyridoxine content achieved the positive correlation as the dietary pyridoxine increased up to 10mg/kg. On the basis of broken-line analysis of AWG, PRE, FCR, and liver pyridoxine data, pyridoxine requirement is recommended between 7.6 and 10.4 mg/kg of dry diet.  相似文献   

19.
The aim of this study was to investigate the effects of citric acid (CA) and malic acid (MA) on growth performance, antioxidant capacity, haematology and immune response of Carassius auratus gibelio. Carassius auratus gibelio were randomly divided into six groups, with three replicates in each group and 20 fish in each replicate. The six groups were fed a basic diet with organic acid supplementation (control group, 0.2%MA, 0.2%MA + 0.1%CA, 0.2%MA + 0.2%CA, 0.2%MA + 0.4%CA and 0.2%MA + 0.6%CA) for 8 weeks respectively. The results showed that compared with the control group, the weight gain rate and specific growth rate significantly increased in organic acid‐fed groups (p < .05). The highest value was in the 0.2%MA + 0.2%CA group. However, there were no significant differences in survival rate, red blood cells or white blood cells between groups. The contents of ALT, AST and LDH in Carassius auratus gibelio fed with organic acids increased, especially in 0.2%MA + 0.4%CA and 0.2%MA + 0.6%CA groups. However, there was no significant difference between the 0.2%MA + 0.2%CA group and the control group. In addition, the highest values of GSH and T‐AOC were found in the 0.2%MA + 0.6%CA group. Compared with the control group, there were no significant differences in the expression of HSP70 or LZM (p > .05), but the expression of Il‐1β, IL‐10 and TNF‐α was up‐regulated in the 0.2%MA + 0.4%CA and 0.2%MA + 0.6%CA groups. The results showed that the growth performance, antioxidant capacity, haematological parameters and expression of immune‐related genes were significantly improved by adding organic acids to the feed of Carassius auratus gibelio. However, excessive addition of organic acids may cause liver injury, and the optimal addition amount in this experiment was 0.2%MA + 0.2%CA.  相似文献   

20.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号