首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

2.
3.
Production of Atlantic salmon smolts in recirculation aquaculture systems (RAS) is growing, and novel production protocols using continuous light in RAS are being implemented in the industry. In the present study, Atlantic Salmon parr were exposed to either a traditional protocol (short-day winter signal [12:12 L:D] for 6 weeks) or to continuous light. Both photoperiods were applied in freshwater (FW) and brackish water RAS. Salmon from all treatments were transferred to seawater pens at 200 and 600 g and grown until slaughter size. A control group was smoltified with a 6-week short-day winter signal and kept in FW until sea transfer at 100 g. Continuous light gave a higher growth rate in RAS but reduced feed intake and growth and increased feed conversion ratio during the first 8 weeks in seawater. However, at slaughter, fish exposed to continuous light was bigger than fish given a winter signal because of the higher growth rate in RAS. Slaughter weight was lowest in fish transferred to sea at 600 g, despite having the highest day-degree sum during their life span. The best performing group was the control group transferred at 100 g. All treatments handled transfer to seawater and survival and maturation were not affected by the treatments in RAS. The immune status was examined with a multigene expression assay on BioMark HD platform from parr stage to 5–7 months after seawater transfer. Overall, there was no significant effect of photoperiod or salinity on the expression of the selected immune genes. In sum, the results from this study indicate that using continuous light in RAS may have negative effects on performance shortly after transfer in fish transferred to sea at 200 g, whereas at 600 g, all treatments had reduced growth after transfer irrespective of treatment in RAS.  相似文献   

4.
Interest in land-based farms using recirculating aquaculture systems (RAS) for market-size Atlantic salmon (Salmo salar) continues to grow, and several commercial facilities are already rearing fish. Performance data for commercially available mixed-sex, all-female, and triploid all-female Atlantic salmon reared to market-size in freshwater land-based facilities, however, are limited, particularly for European strain fish. Accordingly, eight groups of European-sourced Atlantic salmon (five groups of diploid mixed-sex, two groups of diploid all-female, and one group of triploid all-female fish) were reared from eyed egg to market-size in a semi-commercial scale land-based aquaculture systems over five separate production cycles to quantify performance metrics. Fish reached market-size (4−5 kg) in 24.7–26.3 months post-hatch. Fish were reared at a mean water temperature of 12.3–13.7 °C from first feeding to a mean size of 466–1265 g, then 13.3–15.1 °C during growout. On average, all-female groups grew faster than mixed-sex groups; however, environmental conditions and performance of individual cohorts varied. In a comingled production cycle, diploid all-female salmon grew faster than triploid counterparts. Early maturation rates ranged from 0 % to 67 %, with a mean maturation rate of 34 % for diploid mixed-sex fish and 67 % and 13 % for two diploid all-female groups, respectively. Triploid all-female Atlantic salmon did not mature. This research confirms biological and technological feasibility of growing Atlantic salmon to market-size in land-based systems but controlling early maturation of diploid salmon remained a challenge under the conditions utilized in these trials. This research provides important data inputs to optimize operational and financial projections for existing and potential land-based Atlantic salmon farms.  相似文献   

5.
Producing a larger post-smolt in recirculating aquaculture systems (RAS) could shorten the production time in sea cages and potentially reduce mortality. Knowledge of the biological requirements of post-smolts in closed-containment systems is however lacking. In the present study, the effects of salinity and water velocity on growth, survival, health, and welfare of Atlantic salmon reared in RAS were examined. Salmon smolts were stocked in three separate RAS with salinities of 12, 22, and 32‰ and subjected to high (1.0 body lengths per s−1) or low (0.3 body lengths second−1) water velocity. Growth performance, survival, welfare, and physiological stress responses were monitored until the fish reached a bodyweight of around 450 g. Growth rate was higher at lower salinity and higher water velocity generally had a positive effect on growth in all salinities. Feed conversion ratio was lower at 12‰ compared to the 22 and 32‰ when the fish were between 250 and 450 g. Higher mortality, elevated plasma cortisol levels, higher incidence of cataract, and a higher expression of stress-induced genes in the skin (iNOS, Muc5ac-like) indicated a negative effect of higher salinity on fish welfare. Male maturation was low (<1%), and not affected by salinity or water velocity.  相似文献   

6.
7.
8.
9.
Seventeen strains of Saprolegnia spp. were examined for morphological and physiological characteristics, and seven were examined for their pathogenicity to Atlantic salmon, Salmo salar L. Two of the Saprolegnia strains tested caused 89 and 31% cumulative mortality in challenged salmonids and were significantly more pathogenic than the other strains tested. The positive control (Saprolegnia parasitica ATCC 90213) caused 18% mortality, but this was not significantly higher than non-pathogenic strains (0-3% cumulative mortality). All the pathogenic Saprolegnia strains and two non-pathogenic strains had secondary cysts with long, hooked hairs, a characteristic which is claimed to be typical of S. parasitica. This characteristic is apparently necessary, but does not in itself determine the ability to cause mortality in Atlantic salmon. However, all the pathogenic Saprolegnia strains in the present study showed a significantly higher initial growth rate of cysts in sterilized tap water than did non-pathogenic strains. The results of the present study suggest that initial growth rate of germinating cysts in pure water, together with the presence of long hooked hairs on the secondary cysts, may be indicators of pathogenicity of Saprolegnia strains to Atlantic salmon.  相似文献   

10.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

11.
Steroid hormones have been shown to accumulate in recirculation aquaculture system (RAS) water over time; however, their influence on the reproductive physiology of fish within RAS remains unknown. Whether ozonation impacts waterborne hormone levels in RAS has likewise not been fully evaluated. To this end, a controlled 3-month study was conducted in 6 replicated RAS containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether ozone, as typically applied in RAS to improve water quality, is associated with a reduction in waterborne hormones. Post-smolt Atlantic salmon (1253 ± 15 g) were stocked into each RAS; 109 of 264 fish placed in each system were sexually mature males, and 5 were mature females. Water ozonation, controlled using an ORP set-point of 290–300 mV, was applied with the pure oxygen feed gas within the low-head oxygenators of 3 randomly selected RAS, while the remaining 3 RAS did not receive ozone. The RAS hydraulic retention time was 6.9 ± 0.3 days. Study fish were raised under these conditions for 12 weeks; during weeks 10 and 12, triplicate water samples were collected from the following locations in each RAS: i) culture tank, ii) makeup water, iii) pre-biofilter, iv) post-biofilter, and v) post-gas conditioning. Concentrations of 3 waterborne hormones – testosterone, 11-ketotestosterone (11-KT), and estradiol (17β-estradiol) – were quantified using enzyme immunoassays (EIA). Estradiol was significantly reduced by ozonation; testosterone and 11-KT were also reduced by ozonation, although these reductions were not observed across all sampling locations and events. Testosterone and 11-KT concentrations, however, were significantly reduced following water passage through the biofilters of both ozonated and non-ozonated RAS. The results of this study demonstrate the potential for ozone to be used in RAS as a means of preventing the accumulation of steroid hormones. Further research is required to assess whether reducing hormones in this manner impacts precocious sexual maturation in RAS-produced Atlantic salmon.  相似文献   

12.
Triploid Atlantic salmon tend to develop a higher prevalence of skeletal anomalies. This tendency may be exacerbated by an inadequate rearing temperature. Early juvenile all‐female diploid and triploid Atlantic salmon were screened for skeletal anomalies in consecutive experiments to include two size ranges: the first tested the effect of ploidy (0.2–8 g) and the second the effect of ploidy, temperature (14 °C and 18 °C) and their interaction (8–60 g). The first experiment showed that ploidy had no effect on skeletal anomaly prevalence. A high prevalence of opercular shortening was observed (average prevalence in both ploidies 85.8%) and short lower jaws were common (highest prevalence observed 11.3%). In the second experiment, ploidy, but not temperature, affected the prevalence of short lower jaw (diploids > triploids) and lower jaw deformity (triploids > diploids, highest prevalence observed 11.1% triploids and 2.7% diploids) with a trend indicating a possible developmental link between the two jaw anomalies in triploids. A radiological assessment (n = 240 individuals) showed that at both temperatures triploids had a significantly (P < 0.05) lower number of vertebrae and higher prevalence of deformed individuals. These findings (second experiment) suggest ploidy was more influential than temperature in this study.  相似文献   

13.
14.
Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS). To this end, a study was conducted comparing fillet quality and processing attributes of postsmolt Atlantic salmon fed a fishmeal‐free diet (FMF) versus a standard fishmeal‐based diet, in replicate RAS. Mean weight of Atlantic salmon fed both diets was 1.72 kg following the 6‐mo trial and survival was >99%. Diet did not affect (P > 0.05) processing and fillet yields, whole‐body proximate composition(fat, moisture, protein), fillet proximate composition, cook yield, fillet texture, color, or omega‐3 fatty acid fillet content, including eicosapentaenoic acid and docosahexaenoic acid levels. Whole‐body ash content was greater in salmon fed the FMF diet. The FMF diet resulted in a wild fish‐in to farmed fish‐out ratio of 0:1 per Monterey Bay Aquarium's Seafood Watch criteria due to its fishmeal‐free status and use of lipids from fishery byproduct. Overall, fillet quality and processing attributes were generally unaffected when feeding a diet devoid of fishmeal to postsmolt Atlantic salmon cultured in RAS. [Correction added on 7 September 2017, after first online publication: the P value in Abstract has been changed from “P < 0.05” to “P > 0.05”.].  相似文献   

15.
16.
Marine recirculation aquaculture system (RAS) is a prominent technology within fish farming. However, the nitrifying bacteria in the biofilter have low growth rates, which can make the biofilter activation a long and delicate process with periods of low nitrification rates and variations in water quality. More knowledge on the microbial development in biofilters is therefore needed in order to understand the rearing conditions that favour optimal activation of the biofilters. In this case study, we investigated the activation of two biofilters in a marine RAS for Atlantic salmon post‐smolt associated with either high or low stocking densities of fish by monitoring the microbial communities and chemical composition. The results showed that the microbial communities in both biofilters were similar during the first rearing cycle, despite variations in the water quality. Nitrifying bacteria were established in both biofilters; however, the biofilter associated with low stocking density had the highest relative abundance of ammonia‐oxidizing Nitrosococcus (1.0%) and nitrite‐oxidizing Nitrospira (2.1%) at the end of the first rearing cycle, while the relative abundance of ammonia‐oxidizing Nitrosomonas (2.3%–2.9%) was similar in both biofilters. Our study showed that low fish stocking density during the first rearing cycle provided low and steady concentrations of ammonium, nitrite and organic load, which can stimulate rapid development of a nitrifying population in new marine RAS biofilters.  相似文献   

17.
Linnansaari T, Keskinen A, Romakkaniemi A, Erkinaro J, Orell P. Deep habitats are important for juvenile Atlantic salmon Salmo salar L. in large rivers. Ecology of Freshwater Fish 2010: 19: 618–626. © 2010 John Wiley & Sons A/S Abstract – Juvenile Atlantic salmon were studied by underwater video surveillance and self contained underwater breathing apparatus‐diving in deep (i.e. >1.0 m), fast flowing areas of two large river systems (River Teno, River Tornionjoki) in northern Finland. Both video and diving data indicated that young‐of‐the‐year (YOY) salmon (0+) and salmon parr (>0+) readily utilised habitats deeper than 1 m. Young‐of‐the‐year salmon and parr were observed through a range of 0.5–1.9 m and 0.4–2.2 m, respectively. A negative linear relationship between the mean abundance of YOY salmon and mean depth was noted from the diving transects. Salmon parr were similarly abundant throughout the range of depths studied. Video data showed that deep habitats were used throughout the summer (June–August). It was concluded that deep, fast‐flowing areas in large rivers may constitute a significant habitat resource for juvenile salmon that has not been traditionally accounted for when estimating salmon production.  相似文献   

18.
An outbreak of disease characterized by skin ulcers, fin rot and mortality was observed a few days after the transfer of Atlantic salmon (Salmo salar) from a freshwater smolt production facility to a land‐based seawater post‐smolt site. Dead and moribund fish had severe skin and muscle ulcers, often 2–6 cm wide, particularly caudal to the pectoral fins. Microscopic examination of smears from ulcers and head kidney identified long, slender Gram‐negative rods. Histopathological analysis revealed abundance of long, slender Tenacibaculum‐like bacteria in ulcers and affected fins. Genetic characterization using multilocus sequence analysis (MLSA) of seven housekeeping genes, including atpA, dnaK, glyA, gyrB, infB, rlmN and tgt, revealed that the isolates obtained during the outbreak were all clustered with the Tenacibaculum dicentrarchi‐type strain (USC39/09T) from Spain. Two bath challenge experiments with Atlantic salmon and an isolate of T. dicentrarchi from the outbreak were performed. No disease or mortality was observed in the first trial. In the second trial with a higher challenge dose of T. dicentrarchi and longer challenge time, we got 100% mortality within 48 hr. This is the first reported outbreak of disease caused by T. dicentrarchi in Norwegian farmed Atlantic salmon.  相似文献   

19.
20.
In the present study, the possible effect of dietary treatment on early sexual maturation in post-smolt Atlantic salmon, without any negative effect regarding growth, was investigated. The experiment was performed using 4400 individually marked (Pit tag) 1+ salmon, fed either a control diet or a diet supplemented with 0.5% tetradecylthioacetic acid (TTA) in duplicates for 3, 6 or 12 weeks after sea transfer. Compared with the control, dietary supplementation of TTA resulted in a threefold reduction in incidence of sexual mature males (0.6% vs. 1.8%). A curve-linear relationship between relative reduction in maturation and weeks of feeding TTA was found, indicating that the effect is most marked as a result of the first weeks of feeding and then levelling off. No negative dietary impact on growth was observed. As the level of fat in the muscle was reduced by dietary TTA, it seems that post-smolt supplemented dietary TTA do not accumulate high enough energy stores to start the maturation process, whereas the energy-enhancing effect of TTA due to increased fatty acid oxidation capacity may maintain the growth potential. Compared with immature salmon, sexually maturing fish revealed increased spring growth before the onset of maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号