首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

2.
A six‐week growth trial was conducted to evaluate the optimum dietary isoleucine requirement of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Seven isoenergetic (3,400 kcal/kg of dry matter), isoproteic (496 g/kg of dry matter) and isolipidic (70 g/kg of dry matter) diets were formulated to contain graded Ile levels (7.3, 11.3, 15.7, 19.6, 23.5, 26.8 and 30.8 g/kg, dry‐matter basis). Each experimental diet was fed to triplicate groups of 12 hybrid grouper juveniles (average initial body weight: 6.00 ± 0.01 g/fish). Experimental fish were randomly distributed into 21 glass tanks (L 60 × W 45 × H 50 cm) connected to mechanical and biological water filters as a recycling system. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. After the sampling of the growth trial, the remaining fish in each group were fed their corresponding diets for 2 d and then exposed to 4 mg Cu2+ · L?1 water for 24 hr. Results showed that growth performance and feed utilization were significantly affected by different dietary Ile levels (p < .05). Weight gain percentage (WG%), protein productive value (PPV), protein efficiency ratio (PER) and feed efficiency (FE) were increased as dietary Ile level increased, reaching a peak value at 19.6 g/kg dietary Ile, and thereafter, these four parameters declined as dietary Ile level continued to increase. Daily feed intake (DFI) showed an opposite tendency of variations as FE. The quadratic regression analysis of WG%, PPV, PER and FE against dietary Ile levels indicated that the optimum dietary Ile requirement for hybrid grouper was estimated to be 19.8, 20.8, 19.4 and 19.1 g/kg dry matter, respectively. Among all experimental treatments, fish fed 19.6 g/kg dietary Ile had the highest expression of growth and protein synthesis‐related genes, including growth hormone (GH) in pituitary, insulin‐like growth factor 1 (IGF‐1), growth hormone receptor 1 (GHR1), target of rapamycin (TOR) and S6‐kinase 1 (S6K1) in liver. Gut micromorphology was significantly influenced by dietary Ile levels. After the exposure to 4 mg Cu2+ · L?1 water for 24 hr, fish fed 19.6 g/kg dietary Ile had the highest survival and the best immunologic manifestation among all experimental treatments. Generally, the optimum dietary Ile requirement for maximum growth of hybrid grouper was estimated to be 19.8 g/kg dry matter, corresponding to 39.9 g/kg dietary protein.  相似文献   

3.
This experiment was designed to investigate the effects of dietary valine on the growth performance, feed utilization, digestive enzymes, serum antioxidant and immune indices of juvenile Trachinotus ovatus and determine its valine requirement. Six diets with different concentrations of L‐valine (15.0, 16.6, 18.6, 20.7, 23.5 and 25.4 g/kg dry diet, defined as diet Val‐1 to Val‐6.), were formulated to contain 430 g/kg crude protein with fish meal, soybean meal, peanut meal and precoated crystalline amino acids. Each diet was randomly assigned to triplicate treatments of 20 fish (the initial body weight was 5.34 ± 0.03 g) for 8 weeks. The results indicated that the final body weight and percent weight gain (PWG) increased with increasing valine concentration up to 18.6 g/kg (diet Val‐3), whereas the diets containing higher valine concentration reduced the growth performance significantly (p < .05). Moreover, the protein efficiency ratio, body protein deposition (BPD), muscle protein content, intestinal amylase and pepsin activities, serum T‐AOC, LZM activities, IgM, complement 3 and complement 4 concentration had a similar trend with PWG, and the trend of feed conversion ratio, serum AST, ALT activities, urea and MDA content was opposite. Meanwhile, the lipid contents of whole fish and muscle in diet Val‐6 were particularly lower than other diets (p < .05). The survival rate of diet Val‐1 was lowest in this study and was significantly lower than diet Val‐2 (p < .05). The results of polynomial regression based on PWG and BPD indicated that the optimal dietary valine requirement for Trachinotus ovatus reared in seawater‐floating net cages was 19.87–20.17 g/kg valine of dry diet, correspondingly 46.22–46.91 g/kg of dietary protein.  相似文献   

4.
A 12‐week feeding trial was conducted to determine the dietary phosphorus requirement of Heteropneustes fossilis fingerlings (7.7 ± 0.04 g). Fish were fed casein–gelatine‐based purified diets in triplicate groups near satiation with seven different levels of dietary phosphorus (3.2, 5.2, 7.2, 9.2, 11.2, 13.2 and 15.2 g/kg dry diet). All diets were formulated to be isoproteic (400 g/kg) and isoenergetic (17.89 kJ/g). Highest absolute weight gain (68.38 g/fish), best feed conversion ratio (1.48), protein retention efficiency (30.74%), protein gain (12.44 g/fish), haemoglobin (11.19 g/dL), RBCs (3.12 x106/mm3), haematocrit (33.44%) and serum phosphate (2.82 mg/L) were found at 9.2 g/kg phosphorus. Hepatic superoxide dismutase and catalase activity were also significantly influenced by the dietary phosphorus levels. Whole body and vertebrae phosphorus concentrations increased significantly as the amount of dietary phosphorus increased from 3.2 to 11.2 g/kg dry diet and then plateaued. More accurate information on dietary phosphorus requirement was obtained by subjecting the AWG, FCR, vertebrae phosphorus and whole body phosphorus concentrations data against various levels of dietary phosphorus to broken‐line analysis, which yielded the requirement in the range of 9.0–11.0 g/kg for optimum growth and mineralization of H. fossilis.  相似文献   

5.
An 8‐week feeding trial was conducted to determine the requirement of protein for large‐size grouper Epinephelus coioides (initial body weight: 275.07 ± 1.56 g). Six iso‐lipidic (124 g/kg) diets were formulated containing graded levels of protein (350, 400, 450, 500, 550 and 600 g/kg). Grouper was hand‐fed twice daily to apparent satiation with triplicate. The results showed that significantly high weight gain, specific growth rate and significantly low feed conversion ratio were observed in fish fed 450 g/kg protein group. High‐protein level diets significantly increased protein content and significantly decreased lipid content of fish body and muscle. Total protein and cholesterol content in serum of 600 g/kg group were significantly higher than those of 350 g/kg group. However, serum glucose and triglyceride contents of fish fed low‐protein diets were significantly higher than those of fish fed high‐protein diets. Meanwhile, liver glutamic‐pyruvic transaminase and glutamic‐oxaloacetic transaminase in high‐protein diet groups were significantly higher than those of low‐protein diet groups. The intestinal protease activity in high‐protein diet groups was significantly higher that of low‐protein diet groups, but lipase and amylase showed opposite trend. With the increasing of dietary protein level, the activities of alkaline phosphatase, superoxide dismutase and lysozyme in liver of grouper increased significantly compared with 350 g/kg group, while the activities of acid phosphatase decreased significantly. With specific growth rate as the evaluation index, the optimum dietary protein level of large‐size grouper Epinephelus coioides was 438.39 g/kg by fitting the broken‐line regression analysis.  相似文献   

6.
The effect of replacing fish meal (FM) with meat and bone meal (MBM) in diets for juvenile Pseudobagrus ussuriensis was evaluated in a 90‐day feeding trial. Six isonitrogenous (crude protein, 430 g/kg) and isolipidic (crude lipid, 74 g/kg) diets were formulated to contain MBM to replace FM at 0 (S0), 200 (S20), 400 (S40), 600 (S60), 800 (S80) and 1000 g/kg (S100), respectively. The results showed that there was no significant difference in weight gain (WG) among fish fed S0, S20 and S40 diets. However, a significant reduction in WG occurred when 600, 800 and 1000 g/kg FM protein was replaced by MBM (< .05). Similar trends were observed in specific growth rate and protein efficiency ratio. Apparent digestibility coefficients (ADC) of protein and dry matter of the diets S80 and S100 were significantly lower than those of the other diets. The ADC of phosphorus significantly reduced with the increase in dietary MBM level. Nitrogen and phosphorus excretion increased with the increasing dietary MBM level. Protease, lipase and amylase activities of the diets S80 and S100 were significantly lower than those of the other diets (< .05). The results of this study showed that the optimum dietary MBM replacement level was 34.3% according to broken‐line model based on WG against dietary MBM replacement level.  相似文献   

7.
An eight‐week study was conducted to determine the optimum dietary choline level in juvenile olive flounder, Paralichthys olivaceus. Seven diets were prepared to contain 0, 250, 500, 750, 1,000, 2,000 and 3,000 mg/kg diet. Juveniles (5.9 ± 0.03 g; 5.5 ± 0.4 cm; mean ± SD) were randomly distributed into 21 tanks (25 fish/tank) and fed one of the diets in triplicates. Survival rate of fish fed the diet containing the lowest choline level was significantly lower than those of fish fed the other diets (p < 0.05). Final body weight, weight gain, specific growth rate, feed efficiency and protein efficiency ratio significantly increased with increasing choline levels up to 1,000 mg/kg diet. Whole‐body protein and lipid contents increased in accordance with choline levels up to 750 mg/kg diet, beyond which they plateaued. Liver and muscle lipid contents elevated with increasing choline levels up to 2,000 mg/kg diet. Plasma cholesterol esters, triglycerides, cholesterol and total lipids were significantly influenced by the graded choline levels; however, responses of those indices were not identical. Broken‐line analyses of weight gain and liver choline concentrations responding to the graded choline levels revealed that choline requirements of the juvenile flounder could be between 847 and 1,047 mg/kg diet.  相似文献   

8.
Three six‐week growth trials and a digestibility trial were conducted to evaluate a fish meal analogue (FMA) as a replacement for fish meal (FM) in shrimp feeds. Trials 1 and 2 evaluated and confirmed the potential of FMA supplementation (0, 48.5, 97, 145.5 and 194 g/kg) as a replacement for FM up to 200 g/kg without balancing for phosphorus (P) in practical diets for juvenile Pacific white shrimp L. vannamei. At the end of trial 1, shrimp offered diets containing 48.5 g/kg FMA exhibited significantly higher weight gain (WG) than those fed with the diet containing 145.5 g/kg FMA. At the end of trial 2, dietary FMA inclusion at 48.5 and 97 g/kg significantly improved WG and protein retention (PR), while reducing FCR and protein content of shrimp body compared to the diet containing 194 g/kg FMA. To determine whether P deficiency is the cause of reduced growth, the third trial was conducted utilizing equivalent diet but balanced for P. At the end of trial 3, shrimp fed diet containing 48.5 g/kg FMA+P showed significantly higher WG and PR than those fed diet containing 145.5 g/kg FMA+P. No decreasing trend of growth was detected in the diets containing FMA compared to the FM‐based diet. Apparent digestibility coefficients of dry matter, energy, protein and amino acids of FMA were determined using chromic oxide as an inert maker and the 70:30 replacement technique. The energy, protein and individual amino acid digestibility of FMA were significantly lower than those of soybean meal and FM which were run at the same time. Results of this work indicate that FMA can replace up to 200 g/kg FM in shrimp diets with supplemental inorganic P. Given the good growth across the range of inclusion without any indication of a growth depression, the low nutrient digestibility of FMA may be due to an atypical response or the product simply does not work with the testing technique.  相似文献   

9.
An 8‐week feeding trial was conducted to assess the interaction between dietary protein levels and fish growth, digestibility and activity of immunity‐related enzymes of Plectropomus leopardus. Five diets with different protein levels (400 g/kg, 450 g/kg, 500 g/kg, 550 g/kg and 600 g/kg protein) were designed. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed higher weight gain rates than fish fed 400 g/kg and 450 g/kg dietary protein. Ingestion rate in fish fed with 500 g/kg dietary protein was significantly higher than those with other diets. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed that feed coefficients were significantly lower than those fed with 400 g/kg and 450 g/kg dietary protein. Net protein utilization was significantly lower in fish fed with 400 g/kg diet than those with other diets. Fish fed with 400 g/kg and 450 g/kg dietary protein had an apparent feed digestibility coefficient for dry matter that was significantly lower than that with other diets. Protease activity was highest in fish fed on 500 g/kg dietary protein. Fish fed with 500 g/kg dietary protein, had the highest superoxide dismutase activity. Fish fed with 600 g/kg dietary protein, had the highest alkaline phosphatase activity. Thus, a diet containing 500 g/kg protein is recommended for P. leopardus aquaculture.  相似文献   

10.
A 12‐week feeding trial was conducted to evaluate the effects of replacing fishmeal (FM) with soybean meal (SBM), rapeseed meal (RM) and cottonseed meal (CSM) on growth, feed utilization and body composition of juvenile hybrid sturgeon Acipenser baerii ♀ × Acipenser schrenckii ♂ (initial body weight, 8.63 ± 0.24 g). Five isonitrogenous and isoenergetic diets were formulated as follows: a control diet (FM60) containing 600 g/kg FM and four other diets (FM45, FM30, FM15 and FM0 containing 450, 300, 150 and 0 g/kg FM, respectively) where protein from FM was substituted by a mixture of SBM, RM and CSM. Fish fed FM0 and FM15 had poorer growth performance, feed utilization, apparent digestibility coefficients of dry matter, protein, lipid and gross energy, and fed FM0 had poorer hepatosomatic index and survival compared with the fish fed FM60. The whole body lipid in fish fed FM0 was significantly higher than that in fish fed FM60 and FM15. This study indicates that 300 g/kg of FM can be replaced with a mixture of SBM, RM and CSM in the diet of juvenile hybrid sturgeon without compromising growth performance, feed utilization and body composition.  相似文献   

11.
Vitamin C is an essential micronutrient for normal physiological and immune functions of fish. However, its requirements and effects in Chu's croaker (Nibea coibor) are currently unknown. A 56‐day feeding trial was conducted to evaluate the optimal dietary vitamin C requirements based on its effects on growth performance, body composition and biochemical parameters in juvenile Chu's croaker (14.17 ± 0.1 g). Six isoproteic (450 g/kg crude protein) and isolipidic (100 g/kg crude lipid) diets were formulated to contain 2.24 (basal diet), 39.03, 85.01, 171.16, 356.49 and 715.46 mg/kg of vitamin C. The results showed that fish fed on 171.16 mg/kg vitamin C diet had the highest growth performance and feed utilization. Fish fed on the basal diet had higher malondialdehyde (MDA) content and lower activities of antioxidant enzymes in the serum and liver as compared with those fed on vitamin C diets. Polynomial analysis indicated that the optimal dietary vitamin C requirements of juvenile Chu's croaker were 102.28, 98.21, 150.26, 165.38, 71.46, 176.19, 84.84 and 103.78 mg/kg based on weight gain, specific growth rate, liver storage, muscle storage, liver MDA content, liver alanine aminotransferase activity, liver alkaline phosphatase activity and liver superoxide dismutase activity, respectively. We recommend an inclusion level in the range of 71.46–150.26 mg/kg vitamin C in the diets of juvenile Chu's croaker for optimum growth performance, liver function, antioxidant capacity and innate immunity functions.  相似文献   

12.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

13.
A feeding trial was conducted to determine the dietary threonine requirement of juvenile large yellow croaker (Larmichthys crocea). Six diets were formulated containing 45% crude protein with six graded levels of threonine (0.71–2.46% in about 0.35% increment). Each diet was randomly assigned to triplicate groups of 60 juvenile fish (initial body weight 6.00 ± 0.10 g). Fish were fed twice daily (05:00 and 16:30) to apparent satiation for 8 weeks. The result indicated that significant difference was observed in the weight gain among all treatments. Specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and nitrogen retention (NR) increased with increasing levels of threonine up to 1.75% diet (P < 0.05), and thereafter, declined. No significant differences in body dry matter, crude protein, crude lipid or ash content were found among dietary treatments. Theronine contents of fish muscle were significantly affected by dietary threonine levels (P < 0.05). Fish fed the diet with 0.71% threonine showed the lowest threonine content (2.94%) in fish muscle, while fish fed the diet with 1.75% threonine had the highest value (3.16%). Other essential amino acid contents of muscle were not significantly different among the dietary treatments. On the basis of SGR, FE or NR, the optimum dietary threonine requirements of juvenile L. crocea were estimated to be 1.86% of diet (4.13% of dietary protein), 1.90% of diet (4.22% of dietary protein) and 2.06% of diet (4.58% of dietary protein), respectively, using second‐order polynomial regression analysis.  相似文献   

14.
A six‐week growth trial was performed to estimate the dietary protein requirements for maximum growth of juvenile Brazilian sardine (Sardinella brasiliensis) based on growth performance, feed utilization, body composition and digestive enzyme activity. Six isoenergetic diets were formulated to contain protein levels that increased from 250 to 500 g/kg. Each diet was randomly assigned to triplicate groups of 160 fish with mean initial body weight of 0.93 ± 0.13 g, which were fed four times a day to apparent satiation. Growth tended to increase with the increase in the dietary protein level up to 400 g/kg. Total protein intake was indirectly correlated to apparent protein utilization. No significant differences in whole‐body composition were found between fish fed the different protein levels. Acid protease and neutral lipase activities did not show significant differences among the different protein dietary groups. Alkaline protease activity increased in fish fed up to 350 g/kg of protein and amylase activity in fish fed up to 400 g/kg. Using polynomial regression, 367 g/kg was estimated to be the optimum dietary protein requirement for maximum weight gain of juvenile Brazilian sardines.  相似文献   

15.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

16.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

17.
The objective of this study was to determine the minimum dietary requirements of the branched‐chain amino acids (BCAAs: leucine [Leu], isoleucine [Ile] and valine [Val]) for juvenile red drum, Sciaenops ocellatus. This was accomplished by conducting three independent 49‐day feeding trials with juvenile red drum. Experimental diets were prepared by supplementing a basal diet containing 370 g/kg crude protein from red drum muscle and crystalline amino acids with incremental levels of Leu (9.0, 13.0, 17.0, 21.0, 25.0 and 29.0 g/kg of dry diet), Ile (5.0, 8.0, 11.0, 14.0, 17.0 and 20.0 g/kg of dry diet) and Val (6.8, 8.0, 9.2, 10.4, 11.6, 12.8 and 14.0 g/kg of dry diet). Fish were fed to apparent satiation twice daily in each trial, after which growth performance parameters were calculated and body composition and concentrations of BCAAs in plasma were analysed. Incremental levels of dietary Leu, Ile and Val significantly affected weight gain, feed efficiency and protein retention. Analyses of the weight gain data using a broken‐line regression model estimated the minimum Leu, Ile and Val requirements for maximum growth of juvenile red drum to be 15.7 ± 1.7 g/kg (±95% confidence interval), 11.1 ± 2.3 g/kg and 12.4 ± 0.6 g/kg of dry diet, respectively.  相似文献   

18.
A 154‐day trial was performed to assess the use of an alternative protein blend (corn gluten, krill and meat meal) as a substitute for fishmeal in diets for juvenile yellowtail, using four isolipidic (140 g/kg) and isoenergetic diets (24 MJ/kg) with the same digestible protein content (50%). The control diet was FM100, without replacement, and in FM66, FM33 and FM0, fishmeal was replaced at 33 g/kg, 66 g/kg and 100 g/kg, respectively. At the end of the experiment, no differences in growth parameters were observed. Fish fed the FM0 diet exhibited the lowest survival (23%). This high mortality may be due to different factors, such as a dietary amino acid imbalance or some antinutrient factors contained in the alternative ingredients. Feed intake, feed conversion ratio, digestible protein intake and protein efficiency ratio were similar in all diets. However, digestible energy intake and protein efficiency retention were lowest in fish fed the FM0 diet. Apparent digestibility coefficients for protein, energy and amino acids diminished as a substitution for fishmeal increased. Significant differences were observed in the diet whole‐fish body profile amino acid retention (AAR) ratio for the seven essential amino acids. In summary, total fishmeal replacement by the blend assayed was not feasible for yellowtail. The FM66 diet resulted in good growth, high survival and good nutrient efficiency.  相似文献   

19.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

20.
We examined if minimum water exchange could spare dietary methionine (Met) required for maximum growth performance of juvenile Litopenaeus vannamei reared in an intensive outdoor system. Shrimp of 1.98 ± 0.13 g were stocked at 70 animals/m2 and reared for 72 days in 50 tanks of 1 m3 under flow‐through (14.4% a day) and static (1.4%–2.9% a day) green‐water conditions at 32.0 ± 3.7 g/L salinity. Five diets with a minimum inclusion of fishmeal supplemented with a dipeptide, dl ‐methionyl‐dl ‐methionine, were formulated to contain increasing levels of Met, 4.8, 6.2, 7.2, 8.1 or 9.4 g/kg (on a dry matter basis). Each of the five diets were fed four times daily to five replicate groups. Dietary Met and water exchange significantly influenced shrimp survival, gained yield, apparent feed intake, food conversion ratio and final body weight (< .05). Raising shrimp under limited water exchange, i.e., static versus flow‐through spared the dependence on higher levels of dietary Met to maximize shrimp body weight, from 9.4 g/kg to 8.0 g/kg (14.0 and 12.6 g/kg Met+Cys respectively). In an intensive rearing system, a reduction in water exchange is desirable as it leads to a lower need for supplemental dietary Met.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号