首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 11‐wk feeding trial was conducted to evaluate three different protein hydrolysates as feed ingredients in high‐plant‐protein diets for juvenile olive flounder. Five experimental diets were fed to juvenile olive flounder to examine the effect of three different protein hydrolysates on growth performance, innate immunity, and disease resistance against bacterial infection. A basal fishmeal (FM)‐based diet was regarded as a high‐FM diet (HFM) and a diet containing soy protein concentrate (SPC) as a substitute for 50% FM protein was considered as a low‐FM diet (LFM). Three other diets contained three different sources of protein hydrolysates, including shrimp, tilapia, and krill hydrolysates (designated as SH, TH, and KH), replacing 12% of FM protein. All diets were formulated to be isonitrogenous and isocaloric. Triplicate groups of fish (15.1 ± 0.1 g) were handfed one of the diets to apparent satiation twice daily for 11 wk and subsequently challenged against Edwardsiella tarda. Growth performance and feed utilization of fish fed hydrolysate‐supplemented diets were significantly improved compared to those of fish fed the LFM diet. Dietary inclusion of the protein hydrolysates significantly enhanced apparent digestibility of dry matter and protein of the diets. In the proximal intestine, histological alterations were observed in the fish fed the LFM diet. The fish fed the hydrolysate diets showed significantly longer mucosal fold and enterocytes and greater number of goblet cells compared to fish fed the LFM diet. Respiratory burst activity was significantly higher in fish fed the TH and KH diets than fish fed the LFM diet. Significantly higher immunoglobulin levels were found in fish fed SH and KH diets compared to those of fish fed the LFM diet. Dietary inclusion of the protein hydrolysates in SPC‐based diets exhibited the highest lysozyme activity. Significantly higher superoxide activity was observed in groups of fish fed the KH diet. Fish offered the protein hydrolysates were more resistant to bacterial infection caused by E. tarda. The results of this study suggest that the tested protein hydrolysates can be used as potential dietary supplements to improve growth performance and health status of juvenile olive flounder when they were fed a LFM diet.  相似文献   

2.
A 9‐week feeding trial was conducted to investigate the effects of dietary supplementation with protein hydrolysates on growth, innate immunity and disease resistance of olive flounder. A fishmeal (FM)‐based diet was regarded as a control, and three diets were prepared by partial replacement of FM with krill hydrolysate, shrimp hydrolysate or tilapia hydrolysate (designated as Con, KH, SH and TH, respectively). Triplicate groups of fish (24.5 ± 0.3 g) were fed one of the diets to apparent satiation twice daily for 9 weeks and then challenged by Edwarsellia tarda. Fish‐fed KH diet showed significantly (< 0.05) higher growth performance and feed utilization compared with the Con diet. Dry matter digestibility of the diets was significantly increased by KH and TH supplementation. All the examined innate immune responses were significantly increased in fish fed KH diet. Significantly, higher respiratory burst and superoxide dismutase (SOD) activities were found in fish‐fed SH diet. Lysozyme and SOD activities were significantly increased in fish‐fed TH diet. However, no significant effect was found on fish disease resistance. This study indicates that dietary supplementation of the hydrolysates, particularly KH, can improve growth performance, feed utilization and innate immunity of olive flounder.  相似文献   

3.
The supplemental effect of Antarctic krill meal (KM) into a low fish meal (FM) diet was evaluated for olive flounder (Paralichthys olivaceus). A 56% FM‐based diet was regarded as a high FM inclusion diet (HFM), and a low‐FM diet (LFM) was prepared by replacing 50% FM from the HFM. Four other diets were prepared by supplementing 3%, 6%, 9% and 12% KM into the LFM diet gradually replacing soy protein concentrate and tankage meal (designated as KM3, KM6, KM9 and KM12 respectively). Quadruplicate groups of fish were fed one of the diets for 12 weeks. The growth performance and feed utilization efficiency were improved by the dietary KM supplementation. Digestibility of dietary protein and dry matter was increased by the KM3‐9 diets. Haematocrit and haemoglobin were increased by KM supplementation. The innate immunity and antioxidant capacity assessed by Ig, antiprotease, lysozyme, GPx and SOD and the condition factor of fish were significantly increased by KM3‐9 diets. Moreover, goblet cell counts, villi length and fillet yield of fish were significantly improved by all the KM‐containing diets (KM3‐12). A 25‐day‐long challenge test with the Edwardsiella tarda pathogen showed that the cumulative mortality was higher in fish fed the LFM diet than in fish fed the HFM or KM‐supplemented diets. The results indicate that dietary KM supplementation in a LFM diet can increase growth performance and feed utilization efficiency, diet digestibility, intestinal development and functions, innate immunity and disease resistance of olive flounder. The recommended level of KM inclusion in a LFM diet seems to be 6.6% according to quadratic regression analysis.  相似文献   

4.
This study was conducted to investigate the effect of fish protein hydrolysate on growth performance, insulin‐like growth factor I (IGF‐I) levels and the expression levels of liver IGF‐I mRNA in juvenile Japanese flounder (Paralichthys olivaceus). Fish hydrolysate was produced by enzymatic (alcalase and flavourzyme) treatment and size‐fractionated by ultrafiltration. The permeate after ultrafiltration (UF) and the non‐ultrafiltered fish hydrolysate were tested as feed ingredients using high plant protein diets. Fish meal was used in the control diet (FM). The feeding trial lasted for 60 days, and fish fed with 37 g kg?1 UF showed the best growth, feed efficiency, digestibility and protein utilization. Plasma IGF‐I level was examined with radioimmunoassay, and the expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. Plasma IGF‐I levels were significantly increased by inclusion of fish protein hydrolysate. Liver IGF‐I mRNA expression was significantly higher in fish fed with 37 g kg?1 UF diet than fish fed with control diet. The results indicated that small molecular weight compounds from fish protein hydrolysate showed a positive effect on growth and feed utilization in juvenile Japanese flounder. Dietary fish protein hydrolysate could improve plasma IGF‐I levels and liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

5.
为了探讨鱼蛋白水解物对黄颡鱼生产性能的影响,以日本鳀粉为对照,以实用型黄颡鱼饲料配方模式为基础开展实验:1以30.5%鱼粉为对照(FM),在相同配方模式下,以6%鱼蛋白水解物(MPH6)替代20%的鱼粉;2以30.5%鱼粉为对照(FM),在无鱼粉日粮中分别添加3%(FPH3)、6%(FPH6)、12%(FPH12)鱼蛋白水解物;共设计5组等氮等能实验日粮,在池塘网箱中养殖黄颡鱼[初始体质量(30.08±0.35)g]60 d。结果显示:与FM相比,FPH12在SGR、FCR、PRR和FRR方面均无显著差异,而MPH6、FPH3、FPH6组SGR降低了15.45%~24.39%,FCR升高了32.14%~42.86%,MPH6、FPH6差异显著,在PRR和FRR方面,MPH6、FPH3、FPH6组PRR降低了21.11%~27.78%,MPH6组FRR降低了41.51%;全鱼水分、粗蛋白、粗脂肪和灰分各组间差异不显著,FPH3、FPH6、FPH12肌肉多种游离氨基酸水平显著高于FM,其中Thr、Val、His与其在日粮中的水平显著相关;FPH6组HSI显著低于FM,鱼蛋白水解物对CP、VSI、肠体比的影响不显著;血清AST、ALT、HDL、LDL、TP、CHOL、TG无显著差异,FPH3组ALB显著低于FM。研究表明:黄颡鱼日粮中,12%鱼蛋白水解物(干物质)与30.5%鱼粉在生长速度、饲料效率、血清生理指标等方面具有一定的等效性;过高的植物蛋白日粮影响了黄颡鱼的生产性能;饲喂鱼蛋白水解物日粮使黄颡鱼肌肉游离氨基酸的含量升高,特别是呈味氨基酸的含量增加。  相似文献   

6.
The study was conducted to investigate the effects of taurine (Tau) alone or in combination with fish protein hydrolysate (FPH) on growth performance, the expression of Tau transporter (TauT) and metabolic profile in juvenile turbot. FM, FPH0, FPH0+T, FPH10 and FPH10+T diets, respectively, contained 300, 150, 150, 80, and 80 g/kg fishmeal. FPH10 and FPH10+T diets contained 62 g/kg FPH. FPH0+T and FPH10+T diets were, respectively, prepared by supplementing the FPH0 and FPH10 diet formulations with 8 g/kg Tau. Specific growth rate was the highest in FM group and the lowest in FPH10 group. TauT mRNA levels in fish fed Tau supplemented diets were significantly lower than that in Tau unsupplemented diets. NMR‐based metabolomics analysis showed that Tau contents in liver of FPH0+T and FPH10+T were significantly higher than that of FM, FPH0 and FPH10. In muscle, Tau contents were significantly decreased in the FPH10+T versus FPH0 and the FPH10+T versus FPH10 comparisons. In conclusion, 62 g/kg FPH to replace fishmeal may not affect Tau synthesis, transport and metabolism. However, Tau supplemented alone or in combination with a certain level of FPH could reduce the requirement for Tau synthesis and transport and increased Tau levels in muscle and liver.  相似文献   

7.
An 8‐week feeding trial was conducted to compare the effects of dietary protein sources on nutrient digestibility and digestive enzyme activity. Four experimental diets were formulated to contain one of the following as the sole protein source: fish meal (FM), fish protein concentrate (FPC), soy protein concentrate (SPC) and soy protein isolate (SPI). Each diet was randomly assigned to triplicate aquaria stocked with 25 Japanese flounder (Paralichthys olivaceus) each. The dry matter, crude protein and energy digestibility and individual amino acid availability of the SPC‐based diet were significantly lower than those of the other diets. The crude lipid digestibility of soy protein‐based diets was significantly lower than that of the FM‐based diet. The pepsin/protease activity was significantly higher in fish fed fish protein‐based diets compared with fish fed soy protein‐based diets. The lipase activity in fish fed the SPI‐based diet was the highest among the dietary treatments. These results indicate that P. olivaceus can effectively digest the protein from FPC and SPI (but not SPC) as well as FM. The low protein digestibility and amino acid availability of the SPC‐based diet may be related to the non‐protein compounds present in SPC, whereas the low‐lipid digestibility of soy protein‐based diets may contribute to the undigested soy protein fractions and/or the alcohol‐soluble components.  相似文献   

8.
A feeding trial was conducted to compare the effects of supplemental cholesterol in fish meal (FM), fish protein concentrate (FPC), soy protein isolate (SPI) and soy protein concentrate (SPC)‐based diets on growth performance and plasma lipoprotein levels of Japanese flounder (Paralichthys olivaceus). Eight isonitrogenous and isocaloric diets including FM, FPC, SPI or SPC as sole protein source with or without supplementation with 10 g cholesterol kg?1 diet were fed to juvenile fish for 8 weeks. Dietary cholesterol supplementation significantly increased the feed intake and specific growth rate in fish fed SPI‐based diets, but decreased those in fish fed FPC‐based diets. In addition, cholesterol supplementation significantly increased the level of cholesterol and ratio of low‐density lipoprotein cholesterol to high‐density lipoprotein cholesterol in plasma of fish fed fish protein‐based diets, whereas no effects were observed in fish fed soy protein‐based diets. The hepatic lipid content of fish fed FPC‐, SPI‐ or SPC‐based diets were significantly increased by supplemental cholesterol, but no influence was observed in fish fed FM‐based diets. These results suggested that dietary protein source modify the growth‐stimulating action of cholesterol; cholesterol supplementation may increase the arteriosclerotic lesion in fish fed fish protein‐based diets and the incidence of fatty liver in fish fed soy protein‐based diets.  相似文献   

9.
An 8‐week growth trial was conducted to determine the effects of complete replacement of fishmeal protein by soy protein concentrate (SPC) on growth performance of Nile tilapia (Oreochromis niloticus GIFT strain) fry (initial body weight 1.6 ± 0.0 g). In control diet, 135 g kg‐1 fishmeal was used, and in the other two diets, 100% of fishmeal was replaced by SPC supplemented with or without methionine hydroxy analogue (MHA) according to the content in FM diet. Fish of FM group were fed twice daily. Fish of SPC6 group were fed SPC diet six times daily. Fish of SPCM group were fed twice (SPCM2) or six times (SPCM6) daily. The results showed that complete replacement of fishmeal with SPC did not affect survival, condition factor, visceralsomatic index of Nile tilapia. Feed intake (FI) and feed conversion ratio (FCR) of fish in SPCM2 and SPC6 groups were higher than those in FM and SPCM6 groups. Specific growth rate (SGR) of fish in SPCM6 group was highest among four treatments. Productive protein value (PPV) of SPCM2 and SPC6 groups were significantly lower than that of FM group. Fishmeal could be completely replaced by SPC without negative effect on growth by MHA supplementation and increasing feeding frequency.  相似文献   

10.
A 154‐day trial was performed to assess the use of an alternative protein blend (corn gluten, krill and meat meal) as a substitute for fishmeal in diets for juvenile yellowtail, using four isolipidic (140 g/kg) and isoenergetic diets (24 MJ/kg) with the same digestible protein content (50%). The control diet was FM100, without replacement, and in FM66, FM33 and FM0, fishmeal was replaced at 33 g/kg, 66 g/kg and 100 g/kg, respectively. At the end of the experiment, no differences in growth parameters were observed. Fish fed the FM0 diet exhibited the lowest survival (23%). This high mortality may be due to different factors, such as a dietary amino acid imbalance or some antinutrient factors contained in the alternative ingredients. Feed intake, feed conversion ratio, digestible protein intake and protein efficiency ratio were similar in all diets. However, digestible energy intake and protein efficiency retention were lowest in fish fed the FM0 diet. Apparent digestibility coefficients for protein, energy and amino acids diminished as a substitution for fishmeal increased. Significant differences were observed in the diet whole‐fish body profile amino acid retention (AAR) ratio for the seven essential amino acids. In summary, total fishmeal replacement by the blend assayed was not feasible for yellowtail. The FM66 diet resulted in good growth, high survival and good nutrient efficiency.  相似文献   

11.
This study was designed to evaluate changes in the metabolic profile of liver and muscle of turbot (Scophthalmus maximus L.) fed fishmeal‐based diet, diets containing size‐fractionated fish protein hydrolysate and plant protein‐based diet using 1H NMR‐based metabolomics approach combined with the growth. Fish protein hydrolysate (FPH) was obtained by enzymatic treatment, permeate fraction was obtained as UF by ultrafiltered step, and retentate fraction was retained as RF. FM diet contained fish meal used as a single protein source. Four other diets (PP, UF, FPH and RF) contained 180 g kg?1 diet fish meal. 54, 55 and 55 g kg?1 dry diet UF, FPH and RF were supplemented to UF, FPH and RF diets. All diets were formulated to be isolipidic and isonitrogenous fed to five triplicate groups of turbot (16.05 ± 0.03 g) for 68 days. O‐PLS‐DA in FM versus UF, FM versus FPH, FM versus RF and FM versus PP resulted in a reliable model for muscle and liver tissue, while O‐PLS‐DA in UF versus FPH and UF versus RF only showed metabolites changes in liver tissue. Results indicated that metabolite changes among the different treatments were consistent with the growth tendency.  相似文献   

12.
Soya bean meal‐based formulated feeds have recently become available for snakehead culture in Vietnam. This study was conducted to determine the appropriate replacement of fish meal (FM) protein by another soya product, soya protein concentrate (SPC), in snakehead (Channa striata) diets. Five iso‐nitrogenous (45% crude protein) and iso‐caloric (19 KJ g?1) practical diets were formulated to replace 0% (control), 40%, 60%, 80% and 100% of protein FM by protein SPC (100% FM, 40% SPC, 60% SPC, 80% SPC and 100% SPC respectively). A digestibility experiment was also conducted with the same formulated diets with addition of 1% chromic oxide. Fish fed 100% FM and 40% SPC diets had significantly better growth and survival compared with other treatments. Feed intake, feed conversion ratio, protein efficiency ratio and net protein utilization, trypsin and chymotrypsin activities of experimental fish fed 100% FM and 40% SPC diets were significantly higher than those fed other diets. The apparent digestibility coefficient (ADC) of the diet and diet components, ADCdiet, ADCprotein and ADClipid, of fish fed diet 40% SPC and 100% FM treatment were significantly higher than those of other treatments. The cost/kg fish produced in diets 100% FM and 40% SPC was much lower compared with other treatments. Dietary inclusion levels of SPC in diet above 40% significantly affected fish survival, growth, digestibility and trypsin and chymotrypsin activities, although fish chemical composition was not greatly affected.  相似文献   

13.
Seven isonitrogenous and isoenergetic experimental diets were formulated to investigate the effect of low molecular weight fish protein hydrolysate (FPH) in diets on growth performance, feed utilization and liver IGF‐I mRNA levels in Japanese flounder (38.80 ± 1.11 g) fed with high plant protein diets. Fish meal protein was, respectively, replaced by 6% (FPH6), 11% (FPH11), 16% (FPH16), 21% (FPH21), 26% (FPH26) FPH of total dietary protein. FPH diets contained a constant high level of plant protein (690 g kg?1) from soybean meal. As a positive control diet, FM2 contained about 590 g kg?1 plant protein and 410 g kg?1 fish meal protein, while negative control diet FM1 contained about 690 g kg?1 plant protein and 310 g kg?1 fish meal protein. The expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. The results showed that moderate low molecular weight FPH (FPH11) improved growth performance and protein retention. Fish fed with FPH11 and control diet FM2 had similar growth and feed utilization, while high‐level low molecular weight FPH did not improve growth performance and protein retention, and depressed liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

14.
The current high demand and cost of fish meal (FM) necessities the evaluation of alternative plant protein ingredients in diets of farmed marine fish. A 56‐day feeding trial was performed to study the effects of replacement of FM with soy protein concentrate (SPC) in diets of Acanthopagrus schlegelii. Diets were prepared at levels of 0%, 30%, 47.5%, 65%, 82.5% and 100% SPC, respectively, replacing FM. The results indicated no significant differences (p > .05) in % weight gain (WG) and specific growth rate of fish fed S30% to S82.5% diets compared with the control diet while, further inclusion at 100% significantly depressed growth performance. SPC inclusion and phytase supplementation significantly affected the phosphorous discharge (P‐load) showing lowest value (3.83 ± 0.53 g/kg WG) in S100% compared to control (14.79 ± 0.37 g/kg WG) and in fish fed S30% diet (13.24 ± 0.89 g/kg WG) (p < .05). The results of this study showed that FM could be substituted up to 82.5% by SPC in the diet of Acanthopagrus schlegelii fingerlings (5.53 ± 0.12 g) without any adverse effects. Phytase supplementation SPC based diets could be effective in reducing the phosphorus load in the aquatic culture environment.  相似文献   

15.
An experiment with 0.2‐kg Atlantic salmon, Salmo salar in saltwater was conducted to determine if the fish could grow normally, and maintain normal nitrogen (N) and mineral balance when fed a diet with the majority of the protein (75%) derived from soy‐protein concentrate (SPC). The two diets contained 50% SPC and 15% fish meal (FM) or 60% FM as the sources of protein. No calcium phosphate was added to the diets in order to assess the availability of P from the ingredients. A second aim was to investigate if whole‐body concentrations of essential elements and growth were related in individual salmon. Growth (SGR=0.88–0.89) was similar in salmon fed the two diets, and the fish nearly doubled their body weights during the 84 days of feeding. Feed conversion was more efficient for the FM diet (0.81 kg intake kg?1 gain) than for the SPC diet (0.89 kg kg?1). The intake of N was similar, faecal loss of N was lower, while the metabolic N excretion was greater in the fish fed the FM than the SPC diet. This resulted in a total excretion of 35.4 g N kg?1 gain for the salmon fed the FM diet and 35.5 g N for the fish fed the SPC diet. Both the intake, faecal and metabolic excretion of P were higher in the fish fed the FM diet than the SPC diet, resulting in a total excretion of 10.5 g P kg?1 gain for the FM diet and 7.2 g P for the SPC diet. Whole‐body concentrations of Ca, Mg, P and Zn were lower in the fish fed the SPC diet, while the Ca–P ratio was decreased, both when compared with the fish at the start of the experiment, and the fish fed the FM diet. The differences in elemental composition were ascribed to a combination of reduced availability of elements due to phytic acid and lower concentration of elements in the SPC than in the FM. No reduction in growth of individual fish, which could be ascribed to reduced availability of essential elements, was seen.  相似文献   

16.
An 8-week feeding trial was conducted to compare the effects of dietary protein sources on growth performance and plasma thyroid hormones levels of Japanese flounder Paralichthys olivaceus. Four isonitrogenous and isoenergetic diets were formulated to contain one of the followings as main protein source: fish meal (FM), fish protein concentrate (FPC), soy protein concentrate (SPC), and soy protein isolate (SPI). Each diet was randomly assigned to triplicate aquaria stocked with 25 fish each. The feed intake, specific growth rate, feed efficiency, and protein efficiency ratio in fish fed fish protein-based diets were significantly higher than those in fish fed soy protein-based diets. Feed intake and specific growth rate were significantly higher in FM treatment compared to FPC treatment and higher in SPI treatment compared to SPC treatment. The FM treatment had significantly higher levels of plasma cortisol, triiodothyronine, and thyroxin than the other treatments. These results indicate that high inclusion levels of soy protein in diets markedly inhibit the feeding rate and growth of P. olivaceus due to poor palatability caused by the removal of feeding stimulants and/or the incorporation of feeding deterrents. The reduced growth may be partly attributed to the amino acid imbalance, absence of small nitrogen compounds, and presence of antinutritional factors.  相似文献   

17.
Sustainable and profitable commercial aquaculture production of marine fish species is dependent on the development of sustainable protein sources as substitutes for expensive animal meals such as fishmeal (FM). Previous Florida pompano Trachinotus carolinus studies have indicated that poultry by‐product meal (PBM) and meat and bone meal can be used to produce a FM‐free diet if suitable levels of nutrients (such as taurine) are included in the diets. In this study, we attempted to develop an all‐plant protein diet by removing the animal proteins in practical diets for pompano by substituting back select ingredients. A series of eight FM‐free diets were formulated, four systematically replaced soybean meal (SBM) with soy protein concentrate (SPC) and four replaced PBM with SPC. Based on the results, there is no clear disadvantage to the use of SPC as a replacement for SBM. However, the complete removal of PBM resulted in reduced performance. Two additional growth trials were conducted to supplement additional amino acids including glycine, valine and histidine, a proprietary chemical attractant mix, fish protein concentrate and squid hydrolysate to improve the growth of pompano when fed all‐plant protein diets. The only improvement in performance occurred with the squid hydrolysate. These results demonstrate that using soybean meal, soy protein concentrate and corn gluten meal as the primary protein sources, a plant‐based feed formulation can be developed, but the removal of all animal proteins is not yet feasible.  相似文献   

18.
A feeding trial was conducted to evaluate the potential of replacing fishmeal with poultry byproduct meal (PBM) and soybean meal in diets for largemouth bass, Micropterus salmoides. A reference diet (C) contained 400 g/kg fishmeal, and 40 or 60% of the fishmeal was replaced with a blend of pet‐food‐grade PBM and soybean meal (diets PP1 and PP2) or a blend of feed‐grade PBM and soybean meal (diets PF1 and PF2). No significant differences were found in weight gain, nitrogen retention efficiency (NRE), condition factor, and body composition among fish fed diets PP1, PP2, PF1, and PF2. Feed intake and feed conversion ratio (FCR) were higher in fish fed diet PF1 than in fish fed diet PP1. No significant differences were found in weight gain, NRE, condition factor, and body composition between fish fed diet C and diets PP1, PP2, PF1, and PF2. The feed intake and FCR were lower in fish fed diet C than in fish fed diets PP2, PF1, and PF2. This study reveals that dietary fishmeal level for largemouth bass could be reduced to 160 g/kg by inclusion of PBM and soybean meal in combination.  相似文献   

19.
The effect of partially replacing fishmeal (FM) by black soldier fly larvae meal (Hermetia meal—HM) in meagre (Argyrosomus regius) diet was evaluated for nutrient digestibility and digestive enzyme activity. For that purpose, triplicate groups of fish (18.0 ± 0.02 g) were fed during 48 days either a control diet (CTR), without HM, or one of three diets including 100, 200 and 300 g/kg of HM, replacing 17, 35 and 52% of FM, respectively. Apparent digestibility coefficients (ADCs) of dry matter, energy, protein, lysine, isoleucine, leucine, phenylalanine, alanine, glutamate, glycine and serine presented a decreasing response with increased HM inclusion. Chitin ADC was null, independent of dietary HM inclusion. Total alkaline protease activity increased while trypsin activity decreased with dietary HM inclusion. No intestinal chitinolytic activity was detected. Intestinal alkaline protease zymogram revealed nine bands with proteolytic activity against casein, with molecular weights ranging between 15 and 75 kDa. Anti‐protease activity in the intestine was not affected by dietary inclusion of HM compared to the CTR diet. Overall, it is concluded that replacement of up to 17% FM with HM (100 g/kg HM inclusion level) in meagre diets has no major adverse effects in diet digestibility and digestive enzyme activity.  相似文献   

20.
An experiment was carried out to evaluate fermented soybean meal and squid by‐product blend (1:1) (FP) as replacement of fishmeal (FM) for Japanese flounder, Paralichthys olivaceus. Five isocaloric (19 kJ g?1) diets were prepared by replacing 0 (FP0), 12 (FP12), 24 (FP24), 36 (FP36) and 48% (FP48) FM protein with FP. Triplicate groups of juveniles (mean weight of 3.9 g) were delivered the test diets for 8 weeks in a flow‐through sea water system. The results showed that there were no significant differences (> 0.05) among the growth rates of fish fed FP0, FP12, FP24 and FP36 diets. Growth and nutrient utilization parameters were significantly reduced in fish fed FP48 diet. Although, whole body proximate composition of fish were not significantly affected by the dietary treatments compared to the control; methionine and phenylalanine contents were significantly decreased in FP48 group. Protein retention was also significantly decreased in the similar group of fish. Dietary treatments did not alter most of the plasma metabolites, while some of the health parameters were improved in the replacement groups. Results suggested that FP is a potential candidate for alternative protein ingredient in aquafeed and can replace 36% FM protein in the diet of Japanese flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号