首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Coniothyrium minitans, Trichoderma harzianum (HH3) and Trichoderma sp. (B1) were tested for ability to control disease caused by Sclerotinia sclerotiorum in a sequence of a celery crop and two lettuce crops in the glasshouse. In control plots, over 80% of celery and 90 and 60% of lettuce in first and second crops, respectively, were infected at harvest. Only the C. minitaris treatment in the first lettuce crop decreased disease and increased marketable yield. Nevertheless, C. minitans reduced the number of sclerotia recovered at harvest in the celery and first lettuce crops and decreased sclerotial survival over the autumn fallow periods following the celery and second lettuce crop. C. minitans survived in soil for over 1 year and spread to infect sclerotia in virtually all other plots. C. minitans infected sclerotia at all times of the year but sclerotia still failed to degrade during the summer months when the soil was dry. The Trichoderma species tested had no effect on disease and almost no effect on the survival of the sclerotia. even though they could be recovered from soil for the duration of the experiments.  相似文献   

2.
ABSTRACT The effect of the fungal mycoparasite Coniothyrium minitans applied as a spray to crops infected with Sclerotinia sclerotiorum (causal agent of white mold) on contamination of soil with S. sclerotiorum sclerotia was studied in a 5-year field experiment. Sclerotial survival also was monitored during two subsequent years, when the field was returned to commercial agriculture. In a randomized block design, factorial combinations of four crops and three treatments were repeated 10 times. Potato (Solanum tuberosum), bean (Phaseolus vulgaris), carrot (Daucus carota), and chicory (Cichorium intybus), which are all susceptible to S. sclerotiorum, were grown in rotation. Plots were treated with C. minitans or Trichoderma spp. or were nontreated (control). Crops were rotated in each plot, but treatments were applied to the same plot every year. After 3 years during which it showed no effect on sclerotial survival, the Trichoderma spp. treatment was replaced by a single spray with C. minitans during the fourth and fifth years of the trial. The effect of treatments was monitored in subsequent seasons by counting apothecia as a measure of surviving S. sclerotiorum sclerotia and scoring disease incidence. Trichoderma spp. did not suppress S. sclerotiorum, but C. minitans infected at least 90% of S. sclerotiorum sclerotia on treated crops by the end of the each season. C. minitans lowered the number of apothecia compared with the other treatments during the second year after the bean crop. C. minitans reduced the number of apothecia by approximately 90% when compared with the control and Trichoderma spp. treatments and reduced disease incidence in the bean crop by 50% during the fifth year of the trial, resulting in a slightly higher yield. In 1993, but not 1994, a single spray with C. minitans was nearly as effective at reducing apothecia as three sprays (monitored in 1995). The final population size of sclerotia in soil at the end of the 7-year period was lower in all C. minitans plots than at the beginning of the trial, even in plots where two highly susceptible bean crops were grown during the period. The results indicate that the mycoparasite C. minitans has the potential to keep contamination of soil with sclerotia low in crop rotations with a high number of crops susceptible to S. sclerotiorum.  相似文献   

3.
The effects of different inocula of the mycoparasite Coniothyrium minitans on carpogenic germination of sclerotia of Sclerotinia sclerotiorum at different times of year were assessed. A series of three glasshouse box bioassays was used to compare the effect of five spore-suspension inocula of C. minitans , including three different isolates (Conio, IVT1 and Contans), with a standard maizemeal–perlite inoculum. Apothecial production, as well as viability and C. minitans infection of S. sclerotiorum sclerotia buried in treated soil, were assessed. Maizemeal–perlite inoculum at 107 CFU per cm3 soil reduced sclerotial germination and apothecial production in all three box bioassays, decreasing sclerotial recovery and viability in the second bioassay and increasing C. minitans infection of sclerotia in the first bioassay. Spore-suspension inocula applied at a lower concentration (104 CFU per cm3 soil) were inconsistent in their effects on sclerotial germination in the three box bioassays. Temperature was an important factor influencing apothecial production. Sclerotial germination was delayed or inhibited when bioassays were made in the summer. High temperatures also inhibited infection of sclerotia by C. minitans . Coniothyrium minitans survived these high temperatures, however, and infected the sclerotia once the temperature decreased to a lower level. Inoculum level of C. minitans was an important factor in reducing apothecial production by sclerotia. The effects of temperature on both carpogenic germination of sclerotia and parasitism of sclerotia by C. minitans are discussed.  相似文献   

4.
Coniothyrium minitans, marketed as Contans, has become a standard management tool against Sclerotinia sclerotiorum in a variety of crops, including winter lettuce. However, it has been ineffective against lettuce drop caused by S. minor. The interactions between C. minitans and S minor were investigated to determine the most susceptible stage in culture to attack by C. minitans, and to determine its consistency on S minor isolates belonging to four major mycelial compatibility groups (MCGs). Four isolates of S. minor MCG 1 and 5 each from MCGs 2 and 3 and one from MCG 4 were treated in culture at purely mycelial, a few immature sclerotial, and fully mature sclerotial phases with a conidial suspension of C. minitans. Sclerotia from all treatments were harvested after 4 weeks, air dried, weighed, and plated on potato dextrose agar for recovery of C. minitans. S. minor formed the fewest sclerotia in plates that received C. minitans at the mycelial stage; C. minitans was recovered from nearly all sclerotia from this treatment and sclerotial mortality was total. However, the response of MCGs was inconsistent and variable. Field experiments to determine the efficacy of C. minitans relative to the registered fungicide, Endura, on lettuce drop incidence and soil inoculum dynamics were conducted from 2006 to 2009. All Contans treatments had significantly lower numbers of sclerotia than Endura and unsprayed control treatments, and drop incidence was as low as in Endura-treated plots (P > 0.05). Although the lower levels of lettuce drop in Contans treatments were correlated with significantly lower levels of sclerotia, the lower levels of lettuce drop, despite the presence of higher inoculum in the Endura treatment, was attributable to the prevention of infection by S. minor. A useful approach to sustained lettuce drop management is to employ Contans to lower the number of sclerotia in soil and to apply Endura to prevent S. minor infection within a cropping season.  相似文献   

5.
The effects of Coniothyrium minitans inoculum quality and an 8-week interval between inoculum application and crop planting on sclerotinia ( Sclerotinia sclerotiorum ) disease in three successive lettuce crops were investigated in a glasshouse trial. Spore suspensions of three isolates of C. minitans (Conio, IVT1 and Contans) applied at 108 CFU m−2 and a standard Conio maizemeal–perlite application (06 L m−2, 1011 CFU m−2) were assessed for their ability to control S. sclerotiorum . Only the maizemeal–perlite inoculum (isolate Conio) consistently reduced sclerotinia disease. In the third lettuce crop only, isolates IVT1 and Contans formulated by Prophyta and isolate IVT as an oil–water formulation, all applied as spore suspensions, reduced disease at harvest compared with the untreated control. Recovery, viability and C. minitans infection of sclerotia buried during the 8-week period prior to each of the three lettuce crops, and of sclerotia formed on the crop, were tested. Only the maizemeal–perlite inoculum (isolate Conio) reduced the recovery of sclerotia buried in soil for weeks between inoculum application and crop planting, reducing their viability and increasing infection by C. minitans . Eight weeks was sufficient to enable C. minitans to infect sclerotia of S. sclerotiorum , and may account for disease control. After harvest of the second and third crops, maizemeal–perlite treatment (isolate Conio) reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore-suspension treatments. The effect of inoculum concentration and the influence of soil temperature (varying with time of year) on infection of sclerotia by C. minitans are discussed.  相似文献   

6.
Budge SP  Whipps JM 《Phytopathology》2001,91(2):221-227
ABSTRACT All pesticides used in United Kingdom glasshouse lettuce production (six fungicides, four insecticides, and one herbicide) were evaluated for their effects on Coniothyrium minitans mycelial growth and spore germination in vitro agar plate tests. Only the fungicides had a significant effect with all three strains of C. minitans tested, being highly sensitive to iprodione (50% effective concentration [EC(50)] 7 to 18 mug a.i. ml(-1)), moderately sensitive to thiram (EC(50) 52 to 106 mug a.i. ml(-1)), but less sensitive to the remaining fungicides (EC(50) over 200 mug a.i. ml(-1)). Subsequently, all pesticides were assessed for their effect on the ability of C. minitans applied as a solid substrate inoculum to infect sclerotia of Sclerotinia sclerotiorum in soil tray tests. Despite weekly applications of pesticides at twice their recommended concentrations, C. minitans survived in the soil and infected sclerotia equally in all pesticide-treated and untreated control soil trays. This demonstrated the importance of assessing pesticide compatibility in environmentally relevant tests. Based on these results, solid substrate inoculum of a standard and an iprodione-tolerant strain of C. minitans were applied individually to S. sclerotiorum-infested soil in a glasshouse before planting lettuce crops. The effect of a single spray application of iprodione on disease control in the C. minitans treatments was assessed. Disease caused by S. sclerotiorum was significantly reduced by C. minitans and was enhanced by a single application of iprodione, regardless of whether the biocontrol agent was iprodione-tolerant. In a second experiment, disease control achieved by a combination of C. minitans and a single application of iprodione was shown to be equivalent to that of prophylactic sprays with iprodione every 2 weeks. The fungicide did not affect the ability of C. minitans to spread into plots where only the fungicide was applied and to infect sclerotia. These results indicate that integrated control of S. sclerotiorum with soil applications of C. minitans and reduced foliar iprodione applications was feasible, did not require a fungicide tolerant isolate, and that suppression of Sclerotinia disease by C. minitans under existing chemical control regimes has credence.  相似文献   

7.
The soilborne fungus Sclerotinia sclerotiorum infects many important crop plants. Central to the success of this pathogen is the production of sclerotia, which enables survival in soil and constitutes the primary inoculum. This study aimed to determine how crop plant type and S. sclerotiorum isolate impact sclerotial production and germination and hence inoculum potential. Three S. sclerotiorum isolates (L6, L17, L44) were used to inoculate plants of bean, carrot, lettuce, oilseed rape (OSR) and potato, and the number and weight of sclerotia per plant quantified. Carpogenic germination of sclerotia collected from different hosts was also assessed for L6. Production of sclerotia was dependent on both crop plant type and S. sclerotiorum isolate, with OSR and lettuce supporting the greatest number (42–122) and weight (1.6–3.0 g) of sclerotia per plant. The largest sclerotia were produced on OSR (33–66 mg). The three S. sclerotiorum isolates exhibited a consistent pattern of sclerotial production irrespective of crop type; L6 produced large numbers of small sclerotia while L44 produced smaller numbers of large sclerotia, with L17 intermediate between the two. Germination rate and percentage was greatest for larger sclerotia (4.0–6.7 mm) and also varied between host plants. Combining sclerotial production data and typical field crop densities suggested that infected carrot and OSR could produce the greatest number (3944 m?2) and weight (73 g m?2) of S. sclerotiorum sclerotia, respectively, suggesting these crops potentially contribute a greater increase in inoculum. This information, once further validated in field trials, could be used to inform future crop rotation decisions.  相似文献   

8.
本文研究了油菜田间常用除草剂精禾草克和乙草胺对油菜菌核病生防菌盾壳霉Conio-thyrium minitans的影响。结果表明它们对盾壳霉菌丝生长和分生孢子萌发均有显著的抑制作用,其中精禾草克对盾壳霉菌丝生长和孢子萌发的抑制中浓度分别为2.95mg/L和7.80mg/L;乙草胺对菌丝生长和孢子萌发的抑制中浓度分别为137.45mg/L和120.90mg/L。精禾草克可以抑制盾壳霉寄生核盘菌Sclerotinia sclerotiorum菌核,当精禾草克的使用量达田间使用浓度时,盾壳霉不能寄生核盘菌菌核;而乙草胺对盾壳霉寄生菌核的影响较小,在田间使用浓度1250mg/L时,盾壳霉仍可寄生菌核;乙草胺和盾壳霉在田间使用浓度条件下混合使用,60d后菌核腐烂指数与单独使用盾壳霉没有显著差异,均大于75。上述结果表明在田间使用量条件下,乙草胺可以和盾壳霉生防制剂混用,而精禾草克不宜和盾壳霉混用。  相似文献   

9.
Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum is a major disease of oilseed rape (Brassica napus). During infection, large, white/grey lesions form on the stems of the host plant, perturbing seed development and decreasing yield. Due to its ability to produce long‐term storage structures called sclerotia, S. sclerotiorum inoculum can persist for long periods in the soil. Current SSR control relies heavily on cultural practices and fungicide treatments. Cultural control practices aim to reduce the number of sclerotia in the soil or create conditions that are unfavourable for disease development. These methods of control are under increased pressure in some regions, as rotations tighten and inoculum levels increase. Despite their ability to efficiently kill S. sclerotiorum, preventative fungicides remain an expensive gamble for SSR control, as their effectiveness is highly dependent on the ability to predict the establishment of microscopic infections in the crop. Failure to correctly time fungicide applications can result in a substantial cost to the grower. This review describes the scientific literature pertaining to current SSR control practices. Furthermore, it details recent advances in alternative SSR control methods including the generation of resistant varieties through genetic modification and traditional breeding, and biocontrol. The review concludes with a future directive for SSR control on oilseed rape.  相似文献   

10.
盾壳霉是一种重要的生防菌,其在土壤中的存活数量直接关系到防治病害的效果。然而目前没有对土壤中盾壳霉直接计数的方法,构建一种简单易行的土壤中盾壳霉计数方法对研究盾壳霉在土壤中的存活动态具有重要意义。本研究利用农杆菌转化法构建了潮霉素基因和绿色荧光蛋白基因标记的双标记盾壳霉菌株,并测定转化子的生长速度、产孢量和菌核致腐能力,初步分析了该方法计数土壤盾壳霉的有效性和可行性。结果显示,潮霉素基因和绿色荧光蛋白基因可以稳定地遗传和表达,并且部分转化子生长速度、产孢量和菌核致腐能力与出发盾壳霉菌株JNCM没有显著差异。加入土壤中的盾壳霉转化子可以在含潮霉素(50μg/mL)、氯霉素(100μg/mL)和链霉素(100μg/mL)的PDA平板培养,杂菌得到充分抑制,呈现绿色荧光的盾壳霉转化子被有效检出,检出限达到2×103个/g土。本研究所构建的计数方法能有效检出施入土壤中的盾壳霉并进行活菌计数,可以用于盾壳霉JN-CM产品在土壤中的定殖、生长、繁殖和存活情况的研究。应用双标记平板计数法研究了不同温度、湿度、接种量和添加菌核等条件下盾壳霉JN-CM在土壤中的存活规律。结果显示,在含有核盘菌菌核的土壤中,盾壳霉JN-CM可以通过重寄生维持一段时间(12周)的数量增长,在长达半年左右(24周)的时间里其存活率仍然可以维持在65%左右。在不含菌核的土壤中,在一般土壤温度(10~20℃)范围内,无论土壤水分含量高低,其半年存活率也可以维持在50%左右。因此,可以预测,连续施用盾壳霉JN-CM生防制剂,可以使其数量在土壤中长期维持在一定的水平范围,达到长效防治效果。  相似文献   

11.
盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究   总被引:16,自引:0,他引:16  
 本文评估了施于油菜(Brassica napus)叶片上的盾壳霉(Coniothyrium minitans)控制油菜菌核病菌再侵染能力,探讨了其作用机理,并测定了盾壳霉分生孢子在油菜叶面上的存活动态。结果如下:叶面上的盾壳霉对油菜菌核病菌的初侵染影响较小,但在高剂量(> 106孢子/ml)时可以控制病斑的扩展。所有供试剂量的盾壳霉均可不同程度地控制再侵染。盾壳霉分生孢子可在叶面病部迅速萌发,48 h和72 h时孢子萌发率分别为51%和95%,而在健康叶面上6 d未能检测到萌发的孢子。自携带盾壳霉的叶面病部不能分离到核盘菌,表明叶面上的盾壳霉已寄生并破坏了核盘菌再侵染菌丝。自油菜叶面上分离到的盾壳霉菌落数随时间延长而降低,但其分生孢子至少可以在叶面上存活28 d。这即表明,在叶面上适时适量地添加盾壳霉可以控制油菜菌核病的为害。  相似文献   

12.
Sclerotia of Sclerotinia sclerotiorum produced naturally on winter oilseed rape and by an isolate from this host on sterile wheat grain were placed in two different soil types in pots, either on the soil surface or 1. 2, 3, 4 or 6 cm deep. Nitrogen (as TN 34, Thames Nitrogen Co.) was applied to one set of pots in autumn 1982 and spring 1983. Production of apothecia was recorded in this set in 1983 only. In pots without added N apothecia were counted in 1983 and 1984 and sclerotia were recovered from these pots at the end of the experiment.
Overall, production of apothecia was not affected by soil type. More apothecia formed from cultured sclerotia and they appeared earlier than from natural sclerotia. More apothecia were produced from sclerotia placed at 0–2 cm than from those buried deeper. Fewer apothecia were produced in pots with added N and their production was delayed. Fewer sclerotia were recovered from the upper layers of soil with a higher clay content, and when sclerotia were obtained from oilseed rape rather than from cultures.  相似文献   

13.
Coniothyrium minitans grew on all ten solid-substrates (barley, barley-rye-sunflower, bran-vermiculite, bran-sand, maizemed-perlite, millet, oats, peat-bran, rice and wheat) tested, producing high numbers of germinable pycnidiospores (1.9–9.3×108 g–1 air dry inocula). All solid substrate inocula survived better in the laboratory at 5 and 15 °C than at 30 °C for at least 64 weeks.In pot bioassays carried out in the glasshouse and field, soil incorporations of each inoculum almost completely inhibited carpogenic germination ofS. sclerotiorum. In the field bioassay, no sclerotia were recovered after 38 weeks fromC. minitans-treated pots compared to 56% from control pots. In the glasshouse bioassay, 9–30% of sclerotia were recovered after 20 weeks fromC. minitans-treated pots, but 88–100% of these were infected by the antagonist. The antagonist also spread to infect sclerotia in control pots.In larger scale glasshouse trials, single preplanting soil-incorporations of five inocula (barley-ryesunflower, maizemeal-perlite, peat-bran, rice and wheat) controlled Sclerotinia disease in a sequence of lettuce crops, with only small differences between the types of inocula tested. At harvest,C. minitans reduced sclerotial populations on the soil surface and over 74% of sclerotia recovered fromC. minitans-treated plots were infected by the antagonist.C. minitans survived in soil in all solid-substrate inocula-treated plots for at least 39 weeks at levels of 104–105 colony forming units cm–3 soil and spread to infect over 36% of sclerotia recovered from control plots.  相似文献   

14.
Integrated control of soil-borne plant pathogens such as Sclerotinia sclerotiorum is becoming more important as the soil fumigant methyl bromide is being phased out of use. Two alternative methods of control that have been found to reduce viability of sclerotia are steam sterilisation (pasteurisation) of soil or the application of the mycoparasite Coniothyrium minitans. This work investigated the possibility of integrating these two control measures. Soil was pasteurised in an autoclave, using a temperature of 80 °C for 3 min to simulate the possible temperatures reached by soil steaming machines for field use. Coniothyrium minitans was subsequently applied to the pasteurised soil to assess the effects of the combination of control measures in reducing sclerotial viability of S. sclerotiorum. Similar results were found in two soil types. Either method used individually was effective in decreasing the number of viable sclerotia, but no further reduction in sclerotial viability was seen when the two methods were combined. Coniothyrium minitans was found to colonise pasteurised sclerotia significantly quicker than untreated sclerotia, and it was seen that there was an increase in number of C. minitans in pasteurised soil in the presence of sclerotia. Experiments were also conducted to investigate the effect of application timing of the biocontrol agent to soil following pasteurisation, in relation to sclerotial infection. Here, two different isolates of S. sclerotiorum were used, with similar results. Application of C. minitans to soil immediately following pasteurisation resulted in sclerotial infection by the mycoparasite, but application 7 days or more after soil pasteurisation resulted in low recovery of the biocontrol agent from sclerotia, possibly due to the mycoparasite being masked by the presence of other fungi which colonised the sclerotia first.  相似文献   

15.
Understanding the transmission of plant pathogen inoculum during the periods when the host plants are not present is crucial for predicting the initiation of epidemics and optimizing mitigation strategies. However, inoculum production at the end of the cropping season, survival during the intercrop period, and the emergence or release of inoculum can be highly variable, difficult to assess, and generally inferred indirectly from symptom data. As a result, a lack of large datasets hampers the study of these epidemiological processes. Here, inoculum production was studied in Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape. The fungus survives on stubble left in the field, from which ascospores are released at the beginning of the next cropping season. An image processing framework was developed to estimate the density of fruiting bodies produced on stem pieces following incubation in field conditions, and a quality assessment of the processing chain was performed. A total of 2540 standardized RGB digital images of stems were then analysed, collected from 27 oilseed rape fields in Brittany over four cropping seasons. Manual post-processing removed 16% of the pictures, e.g. when moisture-induced darkening of the oilseed rape stems caused overestimation of the area covered with fruiting bodies. The potential level of inoculum increased with increasing phoma stem canker severity at harvest, and depended on the source field and the cropping season. This work shows how image-based phenotyping generates high-throughput disease data, opening up the prospect of substantially increased precision in epidemiological studies.  相似文献   

16.
Coniothyrium minitans isolate Conio grew on both maizemeal-perlite and ground maizemeal-perlite, producing high numbers (1.6×107 conidiag–1 inoculum) of germinable conidia. Coniothyrium minitans isolate Conio applied as a preplanting soil incorporation of maizemeal-perlite inoculum at full application rate (0.6lm–2; 1011 colony forming units (cfu)m–2) significantly reduced Sclerotinia disease in a sequence of three lettuce crops grown in a glasshouse. No reduction in disease was achieved with any of the reduced rate treatments (108cfum–2) of a range of C. minitans isolates (Conio ground maizemeal-perlite at reduced rate, Conio and IVT1 spore suspensions derived from maizemeal-perlite, IVT1 spore suspension derived from oats and Contans® WG spore suspension). After harvest of the second and third crops, C. minitans maizemeal-perlite at full rate reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore suspension and reduced rate maizemeal-perlite inocula. Coniothyrium minitans was recovered from the soil throughout the trial, between 105 and 107cfucm–3 in maizemeal-perlite inoculum full rate treated plots and 101–104cfu cm–3 in all other inoculum treated plots.Pot bioassays were set up corresponding to the inoculum used in the glasshouse, with the addition of Conio ground maizemeal-perlite at a rate corresponding to the full rate maizemeal-perlite. Coniothyrium minitans maizemeal-perlite and ground maizemeal-perlite at full rate significantly decreased carpogenic germination, recovery and viability of sclerotia and increased infection of sclerotia by C. minitans in comparison with spore suspension treatments, reflecting results of the glasshouse trials. Additionally, reduced maizemeal-perlite treatment also decreased apothecial production, recovery and viability of sclerotia compared with the spore suspension treatment, despite being applied at similar rates. Simultaneous infection of sclerotia by several isolates of C. minitans was demonstrated. Inoculum level in terms of colony forming unitscm–3 of soil appears to be a key factor in both control of Sclerotinia disease and in reducing apothecial production by sclerotia.  相似文献   

17.
White mould disease leads to production of sclerotia, which subsequently survive in soil and may be responsible for future epidemics. The effect of the mycoparasite Coniothyrium minitans in decreasing survival of sclerotia of Sclerotinia sclerotiorum was studied. Infection of sclerotia of S. sclerotiorum by C. minitans can be achieved by a single conidium. Under optimal conditions, 2 conidia per sclerotium produced 63% of the maximum infection (ca. 90%) of sclerotia produced by up to 1000 conidia. Similar results were observed on the infection of stem pieces infected by S. sclerotiorum. In field trials, application of conidial suspensions of C. minitans to a bean crop soon after white mould outbreak led to a higher percentage of sclerotial infection than later applications. Ninety per cent infection of sclerotia was obtained within 3 weeks of application by C. minitans suspensions in the range of 5 × 105 and 5 × 106 conidia ml–1 at 1000 l ha–1. The concentration of the conidial suspensions and the isolate used were of less importance. The result was marginally affected by the germinability of the conidia (75% against 61% infected sclerotia at 91% and 16% viability of isolate IVT1, respectively). Less apothecia of S. sclerotiorum developed in soil samples collected after 2 months from plots sprayed immediately after disease outbreak than from those treated 11–18 days later. It is concluded that a suspension of 106 conidia ml–1 in 1000 l ha–1 (= 1012 conidia ha–1) sprayed immediately after the first symptoms of disease are observed, results in > 90% infection of sclerotia of S. sclerotiorum. The infection of sclerotia, which prevents their carry-over, occurs within a broad range of inoculum quality.  相似文献   

18.
The potential use of DNA-based methods for detecting airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae , both damaging pathogens of oilseed rape, was investigated. A method for purifying DNA from spores collected using Hirst-type spore samplers and detecting it using polymerase chain reaction (PCR) assays is described. For both pathogens, the sensitivities of the DNA assays were similar for spore-trap samples and pure spore suspensions. As few as 10 spores of L. maculans or P. brassicae could be detected by PCR and spores of both species could be detected against a background of spores of six other species. The method successfully detected spores of P. brassicae collected using spore traps in oilseed rape crops that were infected with P. brassicae. Leptosphaeria maculans spores were detected using spore traps on open ground close to L. maculans -infected oilseed rape stems. The potential use of PCR detection of airborne inoculum in forecasting the diseases caused by these pathogens is discussed.  相似文献   

19.
ABSTRACT The effect of components of primary inoculum dispersal in soil on the temporal dynamics of Phytophthora blight epidemics in bell pepper was evaluated in field and growth-chamber experiments. Phytophthora capsici may potentially be dispersed by one of several mechanisms in the soil, including inoculum movement to roots, root growth to inoculum, and root-to-root spread. Individual components of primary inoculum dispersal were manipulated in field plots by introducing (i) sporangia and mycelia directly in soil so that all three mechanisms of dispersal were possible, (ii) a plant with sporulating lesions on the soil surface in a plastic polyvinyl chloride (PVC) tube so inoculum movement to roots was possible, (iii) a wax-encased peat pot containing sporangia and mycelia in soil so root growth to inoculum was possible, (iv) a wax-encased peat pot containing infected roots in soil so root-to-root spread was possible, (v) noninfested V8 vermiculite media into soil directly as a control, or (vi) wax-encased noninfested soil as a control. In 1995 and 1996, final incidence of disease was highest in plots where sporangia and mycelia were buried directly in soil and all mechanisms of dispersal were operative (60 and 32%) and where infected plants were placed in PVC tubes on the soil surface and inoculum movement to roots occurred with rainfall (89 and 23%). Disease onset was delayed in 1995 and 1996, and final incidence was lower in plants in plots where wax-encased sporangia (6 and 22%) or wax-encased infected roots (22%) were buried in soil and root growth to inoculum or root-to-root spread occurred. Incidence of root infections was higher over time in plots where inoculum moved to roots or all mechanisms of dispersal were possible. In growth-chamber studies, ultimately all plants became diseased regardless of the dispersal mechanism of primary inoculum, but disease onset was delayed when plant roots had to grow through a wax layer to inoculum or infected roots in tension funnels that contained small volumes of soil. Our data from both field and growth-chamber studies demonstrate that the mechanism of dispersal of the primary inoculum in soil can have large effects on the temporal dynamics of disease.  相似文献   

20.
The effect of soil moisture content on the suppression of Rhizoctonia stem canker on potato by mycophagous soil animals was studied in growth chambers. Three soil moisture levels were established in two bioassays, in which potato sprouts grew through a 15-cm soil layer inoculated with sclerotia of Rhizoctonia solani (AG-3). In one experiment two levels of R. solani inoculum were applied. The effect on plant disease of mycophagous soil fauna was assessed by adding the springtail Folsomia fimetaria and/or the nematode Aphelenchus avenae to the soil. In the absence of mycophagous organisms, Rhizoctonia disease severity on potato stems was highest in dry soil. A. avenae and F. fimetaria reduced Rhizoctonia stem canker when applied at populations found in the field. They were effective over a broad range of soil moistures. The stimulatory effect of dry soil conditions on Rhizoctonia stem canker was counteracted by a greater efficacy of the mycophagous soil fauna under these conditions. Mild drought stress did not seem to be a limiting factor in the biological control of stem canker by these two organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号