首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real‐time rRT‐PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh‐frozen hearts from 2013 (n = 916). The earliest PRV‐positive sample was from a wild‐source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4–21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild‐source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).  相似文献   

2.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

3.
Migration timing, speed, survival and effects of environmental parameters on migration, between wild and hatchery produced Atlantic salmon, Salmo salar L., smolts in the River Lærdalselva were studied. Hatchery‐reared (= 40) and wild pre‐smolts (= 40) were tagged with acoustic tags, and an array of receivers along the migration route was deployed. In all, 77 and 85% of the fish from the two groups, respectively, were recorded as migrating smolts, that is, predation rate and/or numbers of fish opting to remain in the river were low. Hatchery‐reared smolts showed a migration pattern, speed and migration route similar to wild smolts, even though the time period between river release and onset of migration was relatively short. Both groups of smolt showed high migration speed through both the river and the fjord compared with other studies.  相似文献   

4.
The effect of nocturnal and diurnal releases on survival and migration of wild and hatchery‐reared Atlantic salmon, Salmo salar, L., smolts (n = 82) was investigated by releasing acoustically tagged smolts at the lower end of the River Vosso, Norway. Hatchery smolts was registered in the estuary within hours of their release, whereas wild smolts migrated over a prolonged period. The time of estuary exit was affected by river discharge but not by time of release. Progression rates were slow through the estuary (0.25 BL/s ± 0.18 SD) and fast through the fjord (1.80 BL/s ± 0.69 SD), and they were not affected by the time of release or origin. Survival to the fjord was low (0%–15%). Survival was not affected by body length but was lower for wild smolts than for hatchery smolts, and survival of the former was lower when the fish were released in daylight.  相似文献   

5.
The major aim of the current study was to evaluate the effect of substituting fish oil (FO) for a vegetable oil blend (VO) as dietary lipid source on lipid catabolism in Atlantic salmon (Salmo salar L.). The experiment endured from the start of feeding until the salmon reached 2.5 kg. Total and peroxisomal β‐oxidation capacities were determined in red and white muscle and liver. In addition, fatty acid productive value (FAPV) was calculated during the four time periods the experiment was divided into. In all the three tissues, an increased β‐oxidation capacity was found prior to seawater transfer; however, calculating the difference between the peroxisomal β‐oxidation capacity and the total, the peroxisomal β‐oxidation increased more than the mitochondrial β‐oxidation capacity. Hence, in liver and red muscle, 100%and 70%, respectively, of the total β‐oxidation capacity was accounted by peroxisomes prior to seawater transfer, compared with approximately 60% and 3% during the seawater phase. In contrast, white‐muscle mitochondria was the main organelle responsible for oxidizing fatty acids during the entire experiment (>90%). However, during the period of high energy demand (parr‐smolt transformation), fish fed VO exhibited significantly lower β‐oxidation capacity than fish fed FO, coinciding with low FAPV and low specific growth rate (SGR). Further, during periods of high growth rate, fish oxidized even essential fatty acids (18:2n‐6, 18:3n‐3, 20:5n‐3, and 22:6n‐3) when given in surplus. Low dietary levels of essential fatty acids gave significantly higher FAPV of these fatty acids in the whole body. However, the FAPV of 22:1n‐11 was low, indicating that this fatty acid is highly utilized as a substrate for β‐oxidation, irrespective of the dietary levels. There were no differences in whole lipid content between fish fed either FO or VO.  相似文献   

6.
The potential of solid waste originating from a recirculated fish culture system, i.e. faecal material, uneaten food pellets and bacterial biofilms was examined as food source for the marine polychaete Nereis diversicolor. These polychaetes could be a valuable food for fish if they provide essential fatty acids to the fish. Therefore, we analysed the fatty acid profiles from feed and faecal materials, the sediment as well as the cultured organisms — fish and several batches of N. diversicolor — from an integrated recirculating aquaculture system.The major fatty acids (saturated, monounsaturated and polyunsaturated) for all analysed fish feed, fish and faeces samples were C16:0, C18:1 and C22:6 (n − 3), accounting for 48% to 57% of the fatty acids in the samples. The major fatty acids within the sediment were C16:0, C18:1 and C18:3 (n − 3), accounting for 61% of the total fatty acids. The samples of N. diversicolor revealed C16:0, C18:1 and C20:5 (n − 3) as the major fatty acids. Combined, they accounted for 56% of the total fatty acids detected within the worm samples.The results indicate that a recycling or even an upgrade of excreted feed nutrients such as fatty acids, which were otherwise discharged, can be achieved through integrated aquaculture combining fish and worm culture.  相似文献   

7.
Different Shewanella species are isolated both from healthy and from diseased fish. To date, contemporary methods do not provide sufficient insight to determine species and detail differentiation between tested strains. Bacteria isolated from cultured (n = 33), wild (n = 12) and ornamental (n = 6) fish, as well as several reference strains, were tested by 16S rRNA gene sequencing, ERIC‐PCR and pulsed‐field gel electrophoresis (PFGE) assays. Our study indicates that isolates collected from freshwater fish were genetically diverse. Based on 16S rRNA gene sequences, bacteria were clustered into groups S. putrefaciens, S. xiamenensis and S. oneidensis. Some isolates were classified only to genus Shewanella; thus, 16S rRNA gene analyses were not enough to determine the species. ERIC‐PCR revealed 49 different genotype profiles indicating that the method might be useful for differentiation of Shewanella isolates irrespectively to species identification, contrary to PFGE which is not suitable for Shewanella typing.  相似文献   

8.
Vegetable oils, typically high in n − 6 fatty acids, are necessary alternatives in fish feed production. Such oils have been tested in salmonid diets with good growth results, but with major changes in lipid composition. The aim of this study was to provide information regarding the effect of the higher dietary n − 6/n − 3 fatty acid ratio caused by vegetable oil on growth, chemical composition and bone development, on eicosanoid production and on formation and mineralization of bone.A feeding experiment was carried out in juvenile Atlantic salmon (Salmo salar). Groups of fish (1.28 g) were fed diets added fish oil (FO) or soybean oil (SO) as the main lipid source through the 174 days long experimental period with sampling points at days 0, 31, 53, 96, 136 and 174 up to smoltification. Subsequently, fish performance was observed after 2, 8 and 18 months in sea water.Weight was significantly higher in the fish oil group (95.4 g) than in the soybean oil group (87.4 g) after the 174 days experimental period. This difference developed during short day treatment prior to smoltification, and the fish oil group had a significantly higher growth rate (TGC) during this period (1.62 vs 1.45). Whole body mineral analysis displayed low levels of Ca (2400 and 3500 mg kg−1) and P (3200 and 3900 mg kg−1) in all samples. The corresponding Ca:P ratio ranged from 0.74 to 0.91. On day 136 the level of Ca, and Ca/P ratio, were significantly higher in the fish oil group than in the soybean oil group. There was a significant increase in n − 6 fatty acids and decrease in n − 3 fatty acids in the soybean oil group compared to the fish oil group for both TAG and PL in vertebrae. Individual variation was large in plasma prostaglandin E2 (PGE2), and at day 174 the trend was towards a higher level in the soybean oil group. Radiography analyses demonstrated a distinctive pattern of development of spinal pathology with time and fish size, similar in both groups. Hyper dense vertebrae dominated at earlier stages, fusion-type malformations dominated at harvest size. The histological examination of the vertebrae revealed no differences between treatments.The results suggest that vegetable oil as a replacement for fish oil influence the arachidonic acid level in phospholipids of vertebrae, may slightly increase production of PGE2 in blood, and reduce vertebrae mineralization around the sensitive smoltification phase. These trends did not lead to any detectable skeletal malformations. Differences in growth and vertebrae mineralization observed around smoltification disappeared during the seawater phase.  相似文献   

9.
Fatty acid composition, conjugated linoleic acid and cholesterol contents in the muscles of three freshwater fish species (Barbus plebejus escherichi, Capoeta capoeta capoeta and Rutilus rutilus) were determined under natural extreme temperate (July) and cold (January) conditions. The aim of the study was to determine whether there were differences in these components of the muscle lipids among these three fish species under extreme natural conditions. Samples were analyzed using gas chromatography. Palmitic, oleic, docosahexaenoic and eicosapentaenoic acids were the predominant fatty acids in all fish in both months. The percentages of polyunsaturated fatty acids, n − 3 polyunsaturated fatty acids, n − 6 polyunsaturated fatty acids and eicosapentaenoic + docosahexaenoic acids in the muscle of B. plebejus escherichi and C. capoeta capoeta were significantly higher in January (P < 0.05) than in July. The ratio of n − 6 to n − 3 polyunsaturated fatty acids was lower than 0.60 in all fish species, with C. capoeta capoeta showing the lowest ratio in January (0.36). The levels of cholesterol and conjugated linoleic acid ranged from 103.46 to 150.10 mg/100 g oil and from 16.27 to 35.45 mg/100 g oil, respectively, for all samples in both months. There were no statistical differences in cholesterol levels among the three fish species in July and January. Conjugated linoleic acid contents were significantly higher in January in B. plebejus escherichi and C. capoeta capoeta. Of the three species tested, the extreme temperate and cold conditions affected B. plebejus escherichi the most.  相似文献   

10.
Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD‐afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms.  相似文献   

11.
Run timing of escaped farmed Atlantic salmon Salmo salar vs. wild fish was compared by the use of video camera surveillance in 15 rivers over several years, covering 1600 km of the Norwegian coastline (from 58°N to 69°N). Annual runs of wild salmon varied among rivers from <200 fish to more than 10 000. During the surveillance period that for most rivers extended from late May to early October, larger‐sized salmon (fish ≥ 65 cm) generally entered the rivers earlier than small fish. The percentage of salmon identified as escaped farmed fish ranged from 0.1% to 17% across rivers with an average of 4.3%. Estimates of escapees are, however, assumed to represent minimum values because an unknown number of farmed fish passing the video cameras may have been misclassified as wild fish. By the use of a linear mixed model and generalised additive mixed models, it was found that the relationship between run timing and fish length differed significantly between farmed and wild salmon. While small‐sized farmed and wild fish (<65 cm) entered the river at about the same time, wild large salmon returned on average 1–2 weeks earlier than similarly sized escapees. The proportion of large‐sized farmed escapees also increased until late August and decreased thereafter. In contrast, there was a relatively constant and lower proportion of small‐sized escapees throughout the season. Within the surveillance period, there was no evidence of any exceptionally late runs of fish classified as escaped farmed salmon.  相似文献   

12.
Haematological and serum biochemistry parameters were studied and compared between cultured and wild ecotypes of Dojo loach Misgurnus anguillicaudatus during the prime fishing season, i.e. May–August. Data were analysed for the impact of feeding regime and other ecological conditions on the physiology of fish. The results revealed that haemoglobin, cholesterol, total protein, creatinine and uric acid levels in the two ecotypes were significantly different (n = 56, df = 54, P < 0.05). In addition, red blood cell, glucose, triglyceride and urea nitrogen levels were significantly higher in cultured individuals (n = 56, df = 54, < 0.01) than in their wild counterparts. In contrast, the white blood cell level in cultured fish was significantly (n = 56, df = 54, P < 0.01) lower than that in the wild ones. These differences can be attributed to the physiological acclimatization of the fish to their living conditions and feeding regime, which influences the energy metabolism and, consequently, the health of the fish.  相似文献   

13.
Due to increasing resistance to chemical therapeutants, the use of ‘cleaner fish’ (primarily wrasse, Labridae, species) has become popular in European salmon farming for biocontrol of the salmon louse, Lepeophtheirus salmonis (Krøyer). While being efficient de‐licers, cleaner fish mortality levels in salmon cages are commonly high, and systemic bacterial infections constitute a major problem. Atypical furunculosis, caused by Aeromonas salmonicida A‐layer types V and VI, is among the most common diagnoses reached in clinical investigations. A previously described real‐time PCR (qPCR), targeting the A. salmonicida A‐layer gene (vapA), was modified and validated for specific and sensitive detection of all presently recognized A‐layer types of this bacterium. Before stocking and during episodes of increased mortality in salmon cages, cleaner fish (primarily wild‐caught wrasse) were sampled and screened for A. salmonicida by qPCR and culture. Culture indicated that systemic bacterial infections are mainly contracted after salmon farm stocking, and qPCR revealed A. salmonicida prevalences of approximately 4% and 68% in pre‐ and post‐stocked cleaner fish, respectively. This underpins A. salmonicida's relevance as a contributing factor to cleaner fish mortality and emphasizes the need for implementation of preventive measures (e.g. vaccination) if current levels of cleaner fish use are to be continued or expanded.  相似文献   

14.
Fish oil (FO) substitution has been studied in many marine carnivorous fish, but seldom in marine herbivorous or omnivorous species. To evaluate the feasibility of using soybean oil (SO) as a dietary lipid and confirm its capability of converting C18 polyunsaturated fatty acid (PUFA) into long chain polyunsaturated fatty acid (LC‐PUFA) in the marine herbivorous teleost Siganus canaliculatus, juvenile fish were fed with four formulated diets differing in lipid composition, with SO accounting for 0.76% (SO0), 23% (SO23), 45% (SO45) and 67% (SO67) of total dietary lipid respectively. After feeding for 8 weeks, growth performance including weight gain, specific growth rate, feed conversion ratio and protein efficiency rate were better in the SO23 and, especially, SO45 groups than in the SO0 and SO67 groups (< 0.05). Tissue fatty acid compositions were affected by diet, with the liver contents of eicosapentaenoic (EPA), docosapentaenoic (DPA), docosahexaenoic (DHA) acids and total n‐3 PUFA displaying parallel changes with the corresponding dietary fatty acids. While the muscle contents of EPA, DPA and total n‐3 PUFA between SO0 and SO23 groups, and the liver contents of arachidonic acid (ARA) and 20:4n‐3, as well as the muscle content of 20:3n‐6 between SO0 and SO45 groups showed no difference, confirming the biosynthesis of LC‐PUFA from C18 precursors in vivo as the contents of corresponding fatty acids in diets SO23/SO45 were much lower than those in diet SO0 (< 0.05). The results indicate that SO may be a suitable dietary lipid source for S. canaliculatus, and can replace up to 67% or 45% of total dietary FO without negatively compromising growth performance or nutritional quality of fish respectively. Moreover, the study increases our knowledge of FO substitution in marine herbivorous fish.  相似文献   

15.
We previously reported that juvenile Atlantic salmon with mean initial BW 11.5 g offed a methionine deficient diet had lower weight gain due to a reduced protein accretion, while lipid gain was unaffected. Muscle of the fish fed the methionine deficient diet was depleted for sulphur amino acids, while in liver, the concentration of these metabolites was maintained within narrow limits. We speculated whether this could be due to an increased muscle proteolysis to support a prioritized liver metabolism in fish fed the low methionine diets. In this study, we assessed whether genes associated with muscle proteolysis increased under methionine deficiency. The composition of the diets was similar to those used previously containing 1.6 or 2.1 g Met/16 g N. We confirmed that the fish fed the low methionine diet gained less protein compared to fish fed the DL‐methionine enriched diet (P = 0.014), but growth did not reduce significantly. Also the deficient fish maintained the concentrations of liver sulphur amino acids and reduced muscle free methionine. Several of the other free amino acids within muscle increased. Further, methylation capacity was maintained in liver but reduced in the muscle (P = 0.78 and 0.04, respectively). Gene expression of muscle IGF‐1 was lower (P = 0.008) and myosin light chain 2 tended (MLC2, P = 0.06) to be reduced in fish fed low methionine diet, concurrently the activity of cathepsins B+L increased (P = 0.047) in muscle of fish fed the low methionine diet. Gene expression of the muscle‐specific E3 ubiquitine ligases (Murf and MaFbx) was not affected by treatment. Thus, the lower protein gain observed in fish fed the low methionine diet may be caused by reduced protein synthesis in line with the reduced IGF‐1 gene expression in the white trunk muscle. Thus, to support metabolism, the dietary protein needs to be balanced in amino acids to support metabolism in all compartments of the body and secure maximal protein gain.  相似文献   

16.
While co‐infections are common in both wild and cultured fish, knowledge of the interactive effects of multiple pathogens on host physiology, gene expression and immune response is limited. To evaluate the impact of co‐infection on host survival, physiology and gene expression, sockeye salmon Oncorhynchus nerka smolts were infected with the salmon louse Lepeophtheirus salmonis (V?/SL+), infectious hematopoietic necrosis virus (IHNV; V+/SL?), both (V+/SL+), or neither (V?/SL?). Survival in the V+/SL+ group was significantly lower than the V?/SL? and V?/SL+ groups (p = 0.024). Co‐infected salmon had elevated osmoregulatory indicators and lowered haematocrit values as compared to the uninfected control. Expression of 12 genes associated with the host immune response was analysed in anterior kidney and skin. The only evidence of L. salmonis‐induced modulation of the host antiviral response was down‐regulation of mhc I although the possibility of modulation cannot be ruled out for mx‐1 and rsad2. Co‐infection did not influence the expression of genes associated with the host response to L. salmonis. Therefore, we conclude that the reduced survival in co‐infected sockeye salmon resulted from the osmoregulatory consequences of the sea lice infections which were amplified due to infection with IHNV.  相似文献   

17.
A 70‐day experiment was conducted to examine the effects of different macroalgal meals and lipid sources on growth, body wall composition and fatty acid (FA) profile of sea cucumber Apostichopus japonicus. Two macroalgal meals including Sargassum muticum (SM) and Gracilaria lemaneiformis (GL) and two lipid sources including fish oil (FO) and vegetable oil (VO) were formulated into four diets, i.e., S. muticum and fish oil (SF), S. muticum and vegetable oil (SV), G. lemaneiformis and fish oil (GF) and G. lemaneiformis and vegetable oil (GV). The results showed that the specific growth rates (SGR) of A. japonicus fed diets containing SM were significantly higher than those fed diets containing GL. No significant differences in SGR between the FO‐based and VO‐based groups were observed. Similar results were observed in the body wall lipid content. Most body wall FAs changed to resemble the dietary FA proportions because of the dietary effect. Concentrations of 20:4n‐6 of the SF and GF groups were significantly lower than the SV and GV groups, while levels of 20:5n‐3 and 22:6n‐3 were significantly higher than the SV and GV groups. The n‐3/n‐6 polyunsaturated fatty acids (PUFA) ratios of the SF and GF groups were significantly higher than the SV and GV groups. Moreover, the SF group had significantly higher 20:5n‐3 and 22:6n‐3 contents and n‐3/n‐6 PUFAs ratio than the GF group. These findings reveal that the SF diet can show beneficial effects on both growth performance and body wall n‐3 PUFAs content of A. japonicus.  相似文献   

18.
Effects of dietary tetradecylthioacetic fatty acid (TTA) on muscle fat, development of gonads and early sexual maturation in S0 Atlantic salmon during the first year in sea were investigated. TTA (0.5% w/w) was added to the feeds for 8 weeks in the spring. In May, at the end of the TTA‐feeding period, the fish in the TTA group had significantly (P < 0.05) less fat (10.1%) stored in muscle compared with the control group (10.8%). In September, mean male gonadosomatic index (GSI) in maturing fish in the TTA group was found to be lower compared with the maturing fish in the control group (P = 0.05). On the basis of GSI values, male sexual maturation in September was 10.0% vs. 14.4% for the TTA and the control group respectively. Thus, relative to the control group, the incidence of male sexual maturation in the TTA group was reduced by about 1/3 (P = 0.002). Production data was not affected by dietary supplementation of TTA. This study reveals that TTA significantly reduces the incidence of male sexual maturation in S0 Atlantic salmon. A significant elimination model of TTA in fish muscle that takes into account, the growth rate of the fish was further developed in this study.  相似文献   

19.
This study investigated the effect of n‐3 to n‐6 fatty acid ratios in broodstock diets on reproduction performance, fatty acid composition of eggs and gonads of tongue sole Cynoglossus semilaevis. Broodstock were fed five isonitrogenous and isoenergetic diets for 60 days. The supplemented lipids were prepared by a combination of fish oil and soybean oil inclusion FO (fish oil); FSO1 (fish oil: soybean oil = 7:1); FSO2 (fish oil: soybean oil = 2.2:1); FSO3 (fish oil: soybean oil = 1:1); FSO4 (fish oil: soybean oil = 1:4.3) as lipid sources with different n‐3 to n‐6 fatty acid ratios 10.40, 5.21, 2.81, 1.71 and 0.87. Results showed that relative fecundity, fertilization rate and survival rate of larvae at 7 days posthatching were all higher in broodstock fed FSO1 and FSO2 diet and significantly (< 0.05) decreased in groups fed FSO3 and FSO4 diets. The best result in starvation tolerance test was obtained in FSO2 diet. The present study suggests that n‐3 and n‐6 PUFA ratio in broodstock diet has a considerable effect on spawning performance, egg and larval quality for C. semilaevis.  相似文献   

20.
The sea louse, Lepeophtheirus salmonis (Krøyer 1837), is a significant parasite of farmed salmon throughout the Northern Hemisphere. Management of on‐farm louse populations can be improved by understanding the role that wild fish play in sustaining and providing refuge for the local population of sea lice. In this study, 1,064 sticklebacks were captured. Of these animals, 176 individuals were carrying a total of 238 sea lice, yielding a prevalence and intensity of 16.5% and 1.4 lice per fish, respectively. Detailed examination of the sea lice on the three‐spined sticklebacks captured in Cobscook Bay found two L. salmonis individuals using three‐spined sticklebacks as hosts. A 2012 survey of wild fish in Cobscook Bay, Maine, found multiple wild hosts for Caligus elongatus (von Nordmann 1832), including three‐spined sticklebacks (Gasterosteus aculeatus L.), but no L. salmonis were found in this earlier study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号