首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
大亚湾珊瑚礁生态系统简化食物网的稳定同位素   总被引:2,自引:0,他引:2  
为了阐明大亚湾珊瑚礁生态系统的简化食物网结构,本研究应用碳(C)、氮(N)稳定同位素技术测定了大亚湾珊瑚礁区样品的δ13C和δ15N值,计算主要消费者营养级并绘制连续营养谱,构建了大亚湾珊瑚礁的营养结构。结果显示,大亚湾珊瑚礁生态系统食物网δ13C值范围为-23.22‰~-10.76‰,平均值为-16.47‰±2.89‰;δ15N值的范围为4.32‰~15.82‰,平均值为11.46‰±2.37‰。各潜在食源和消费者的碳、氮同位素比值之间均有显著性差异。根据δ15N值计算结果显示,大亚湾珊瑚礁区主要消费者生物种类的营养级范围为1.70~3.64,其中腹足类、双壳类和鱼类的营养级分别为1.84~2.68、1.70~2.49和2.45~3.64。大型底栖动物的碳、氮同位素比值在季节之间无显著性差异。利用SIBER模型计算了大型底栖动物群落的6个营养结构量化指标,发现平均营养级多样性(CD)在各季节变化较小,摄食来源多样性水平(CR)、营养级长度(NR)和生态空间利用程度(SEAc)...  相似文献   

2.
根据2017年夏季和2018年冬季于大亚湾海域进行的底拖网渔业生物调查,该研究采用碳、氮稳定同位素 (δ13C、δ15N) 技术,分析了大亚湾渔业生物的δ13C、δ15N基本特征,构建了连续营养级谱,并探讨了不同季节渔业生物营养结构的差异。结果显示,大亚湾海域渔业生物的δ13C介于−19.66‰~−15.19‰,均值为 (−17.26±0.86)‰;δ15N介于11.63‰~16.01‰,均值为(13.59±0.96)‰。以小型浮游动物的δ15N平均值作为基准构建渔业生物营养级谱,发现大亚湾海域渔业生物的营养级介于2.99~4.28,鱼类的营养级跨度最广,食性较复杂。运用SIBER模型计算了渔业生物的7个营养结构量化指标,发现部分生物摄食共同的饵料,存在生态位重叠现象。此外,夏季群落营养冗余度比冬季低。  相似文献   

3.
推水养殖系统是集循环养殖、高效集污、生物净化及自动控制等技术为一体的生产方式。但该系统营养物质归趋尚未明晰,造成饵料资源浪费和养殖调控失策。该研究以草鱼(Ctenopharyngodon idellus)推水养殖系统为实验组,以普通池塘养殖系统为对照组,利用稳定同位素[碳(δ13C)、氮(δ15N)]技术研究两种养殖系统生物食物组成和系统食物网结构。结果表明,草鱼推水养殖系统各生物组分δ13C介于(-25.76±0.23)‰-22.26±0.20‰,普通池塘系统δ13C介于(-25.83±0.24)‰-22.38±0.15‰;推水养殖系统各生物组分δ15N介于(6.73±0.08)‰12.34±0.11‰,普通池塘系统δ15N介于(6.73±0.08)‰12.14±0.11‰。稳定同位素混合模型分析结果显示,两组系统中草鱼饲料和底泥碎屑是消费者的主要食物来源。其中,草鱼的主要食物来源是草鱼饲料,鳙(Aristichthys nobilis)的主要食物来源是草鱼饲料、大型浮游动物,鲫(Carassius auratus)的主要食物来源是底泥碎屑,底泥碎屑的主要来源是草鱼饲料。推水养殖系统草鱼饲料对草鱼的食物组成贡献率高于普通池塘系统。因此,采用推水养殖模式,可促进养殖生物对饲料的摄食,提高饲料利用效率。  相似文献   

4.
Stable carbon isotope ratios were measured in archived striped bass, Morone saxatilis (Walbaum), scales to identify changes in the feeding behaviour of this species over time. Striped bass tissue and scale samples were collected from Rhode Island coastal waters during 1996 and archived scale samples (1982–1997) were obtained from Chesapeake Bay. Known striped bass prey items were also collected from Chesapeake Bay and analysed for δ13C. A significant correlation was observed between carbon isotope ratios in striped bass scales and muscle tissue (r2 = 0.52; P < 0.05). Carbon isotope ratios were enriched (less negative) in scales relative to muscle tissue by about 3‰. Carbon isotope ratios in archived striped bass scales from Chesapeake Bay increased significantly from ?16.7 ± 0.2‰ in 1982 to ?15.1 ± 0.3‰ in 1997. Benthic species, especially invertebrates, were isotopically enriched relative to pelagic fish species collected from the main‐stem of Chesapeake Bay. Prey samples collected from riverine locations within Chesapeake Bay were isotopically depleted relative to those collected in the open portion of the Bay. The changes in the carbon isotope ratios of the striped bass scales could be related to changes in the relative proportions of pelagic and benthic food items in the diet of striped bass or to changes in the feeding locations of this species. In either case, there have been changes in the feeding behaviour and/or relationships of the striped bass between 1982 and 1997. Such changes may be related to changing ecological conditions within the estuary, which could influence the health of Chesapeake Bay striped bass.  相似文献   

5.
The control of adverse effects and the possibility of removing suspended solids from recirculating aquaculture systems (RAS) are the principal challenges facing aquaculture engineers. However, their dynamics and transformations are not yet well known. In this study, carbon and nitrogen stable isotopes values (δ13C and δ15N) were used as tracers of particulate matter in a seabass RAS. An isotopic mixing model was employed to estimate the contributions of particulate sources. Feed (−22.1‰ for δ13C and 11.9‰ for δ15N), feces (−24.0‰ for δ13C and 6.4‰ for δ15N) and biofilm (−25.1‰ for δ13C and 12.9‰ for δ15N) were identified as main sources of particulate matter. The particle traps collected a mixing of 29% of uneaten feed and 71% of feces, when drum filter eliminated all remaining uneaten feed, shifting the isotopic signatures of suspended solids from −23.8 and 7.9‰ to −24.9 and 8.3‰ for δ13C and δ15N, respectively. The fish muscle (−18.6‰ for δ13C and 15.4‰ for δ15N) could reflect the isotopic variability of feed ingredients accumulated over time. The isotopic shifts indicate that the contribution of three sources depends on: (1) fish metabolism; (2) water treatment devices; and (3) bacterial bio-fouling into biofilter.  相似文献   

6.
We evaluated the potential food sources of six commercially important bivalve species (Mactra veneriformis, Mactra chinensis, Ruditapes philippinarum, Cyclina sinensis, Dosinia laminate, and Sinonovacula constricta) that coexist in intertidal areas of Zhuanghe Bay, northern China. The δ13C values of bivalves (?19.9 to ?19.0 ‰) were between those of particulate organic matter (POM) (?22.5 ‰) and sedimentary organic matter (SOM) (?14.9 ‰). Based on the isotope two-source mixing model, the relative contributions of POM and SOM to the dietary regime of intertidal bivalves were 71.6 and 29.4 %, respectively. This result is consistent with the traditional view that POM is the principal food source of bivalves. The lack of significant differences in δ13C values among species suggests that they had the same primary food source. High proportions of dinoflagellate fatty acid markers in all species supported the premise that POM was their primary food source. Levels of bacterial and terrestrial organic matter (TOM) fatty acid markers were also high in all species, indicating that bacteria and TOM can be important supplemental food sources for intertidal bivalves.  相似文献   

7.
The uptake and assimilation of nitrogen and carbon by shrimp were measured in 1200 L mesocosms using stable isotope enrichments. Labels were added via 15N‐, 13C‐glycine and amino acid mixtures in feeds or as 15NH4+ to pond water. Label was incorporated into shrimp via algal growth indicating that up to 31% of nitrogen requirements were derived from pond ecosystem dynamics. This value is low in comparison with other shrimp aquaculture isotopic tracer studies but is probably due to differences in shrimp‐rearing conditions. Direct incorporation of the enriched feed label was low in shrimp muscle tissue (3.3% for 13C‐glycine, 5.9% for 15N‐glycine and 7.8% for 15N‐amino acid mixture). Mass balance calculations indicate the remaining shrimp biomass was derived from feed, but loss of label into solution during feeding led to underestimation based on tracers. Incorporation of isotopic labels into feed as large molecular weight proteinaceous or microencapsulated/fat‐coated compounds is recommended to prevent dissolution and loss.  相似文献   

8.
Nile tilapia (Oreochromis niloticus) is currently one of the most farmed freshwater fish and contributes significantly to total global aquaculture production. The genetically improved strain of O. niloticus (GIFT) was introduced to Papua New Guinea (PNG) in 1999 to improve food and income security. The high cost and low availability of commercial fish feed hinder the growth of GIFT farming in PNG. Stable carbon and nitrogen isotopes were used to determine the role of supplementary and natural food sources in the diet of GIFT in pond‐based aquaculture. Two treatments were used: treatment 1 was daily feeding, and treatment 2 was weekly feeding, each with three replicates. Isotopic analysis of muscle tissue and all potential food sources showed that pellet feed contributed 7% to the growth of GIFT in daily‐fed ponds and 33% in the weekly‐fed ponds. Highly enriched δ15N values for chicken manure, compared to depleted values for GIFT and other natural food sources in both treatments, clearly indicate insignificant contributions of this input to production. After 90 days of cultivation, the average final body weight of GIFT receiving daily feed inputs was 134 g (average 19 cm), while for weekly‐fed it was 92 g (17 cm). The feed conversion ratio (FCR) was poor (6.4:1) in the daily‐fed GIFT ponds compared to a better, and preferable, FCR (1:1) in the weekly‐fed ponds. The findings of this study show that pelleted feed was not the major contributor to the growth of GIFT. Genetically improved farmed tilapia aquaculture should focus on enhancing natural food availability for fish production.  相似文献   

9.
利用稳定同位素技术,对崇明东滩南部湿地4、5月份采集到的大弹涂鱼(Boleophthalmus pectinirostris)的食源进行初步研究。结果显示,大弹涂鱼δ13C和δ15N值分别为-19.28‰~-14.59‰,7.96‰~10.13‰。利用同位素混合模型(Iso Source)计算包括白茅(Imperata cylindrical)、芦苇(Phragmites australis)、互花米草(Spartina alterniflora)、糙叶苔草(Carex scabrifolia)、底栖微藻、颗粒有机物和沉积质在内的7种初级生产者对大弹涂鱼碳源食源贡献的可能范围及分布频率,结果表明白茅、芦苇、互花米草、糙叶苔草、底栖微藻、颗粒有机物和沉积质对大弹涂鱼食源的可能贡献范围分别为0%~69%、0%~30%、0%~72%、0%~30%、0%~76%、0%~44%和0%~47%。利用后整合方法计算得到C_3植物(芦苇和糙叶苔草)、藻类及有机质(底栖微藻、颗粒有机物和沉积质)和C4植物(白茅和互花米草)三大类生产者对大弹涂鱼食源的贡献情况,结果表明C_3植物、藻类及有机质和C_4植物对大弹涂鱼春季食物贡献范围分别为0%~30%、0%~76%和24%~72%,中值分别为15%、38%和48%,表明C_4植物是大弹涂鱼不可缺少的食源。同时,根据大弹涂鱼的δ15N值,得出大弹涂鱼属于2.07~2.65级营养级,为次级消费者。  相似文献   

10.
Stable isotope analysis was used to investigate seasonal and spatial variations of the food web structure in a large eutrophic lake ecosystem (Lake Taihu, China). Basal food sources, invertebrates and fish were sampled in two lake regions with different environmental conditions and spatial variations in the isotopic composition of lake food webs were found. Overall, more depleted δ13C and enriched δ15N isotope values of organic matter sources and consumers were found in the phytoplankton-dominated lake region than in the macrophyte-dominated region. Wide seasonal variations in the isotopic ratios were also observed in the lake biota, with a general trend towards enriched δ13C and δ15N values in summer and depleted values in winter. This pattern could be explained by a combination of environmental (e.g., irradiance and nutrient inputs) and biotic (e.g., availability of food sources and plasticity in prey item choice) features. Results of isotope mass balance suggest that macrophytes provide some trophic support in the macrophyte-dominated area, but in both lake regions it is more likely that aquatic food webs are phytoplankton based rather than macrophyte based under eutrophic conditions.  相似文献   

11.
Holothuria arguinensis aquaculture started to be developed in 2014, being the first sea cucumber species from Europe. However, some aspects of its aquaculture biotechnology, such diets, need to be assessed. This work aimed to evaluate seagrass debris of Zostera noltii and Cymodocea nodosa as food source for broodstock maintenance in tanks, during breeding periods. The given feed rations per tank were calculated as the 30% of the total sea cucumber biomass in each tank and reviewed each week. Then, feed rations of seagrass and sediment were calculated from this value, according to the following percentages: 40% sediment, 15% Z. noltii, 40% Z. noltii, 15% C. nodosa and 40% C. nodosa. H. arguinensis growth, feeding rate and nutritional value were assessed under these diets. H. arguinensis fed with 40% of Z. noltii showed the highest growth (specific growth rate = 0.09 ± 0.06%/day, absolute growth rate = 0.11 ± 0.07 g/day) increasing their final weight in 5.86 ± 3.57% in 57 days. However, the individuals fed with C. nodosa showed a negative growth. H. arguinensis showed a reduction in its feeding rate as the organic matter content in the diets increased. H. arguinensis did not show any important change on proximate composition, protein, lipid, mineral contents and fatty acids profile among the feeding groups, or in comparison with the individuals collected from wild habitat. Therefore, H. arguinensis could be fed with Z. noltii debris during tanks maintenance along breeding period, ensuring its growth and maintaining its nutritional profile.  相似文献   

12.
To investigate the population dynamics of naturally recruited wild Japanese eels, fisheries data of wild individuals in Okayama Prefecture were investigated as a case study. Wild and stocked eels were discriminated using a recently developed method based on otolith stable isotopes. Of the 161 eels captured in freshwater areas where eels had been stocked, 98.1% were discriminated as stocked. In contrast, 82.8% of 128 eels captured in coastal areas where eels are not stocked were discriminated as wild. There was a significant decrease in longline and set-net catch per unit effort between 2003 and 2016 in the coastal areas where most eels were discriminated as wild, indicating ongoing depletion of wild Japanese eels in these waters.  相似文献   

13.
The performance of microbial flocs as food for Artemia, which were produced using waste from a recirculating aquaculture system stocking European eel (Anguilla anguilla), was investigated in an 18‐day feeding trial. Four dietary treatments were used: Chlorella only (diet 1), flocs only (diet 2), and both Chlorella and flocs offered as mixed diets in different proportions (diets 3 and 4). The survival rate of Artemia fed diets 1 and 4 were significantly higher than those fed diets 2 and 3. The survival rate of Artemia fed diet 4 was the highest among the four diets. Individual length (10.02 ± 2.44 mm) and biomass production of diet 3 (3.2 ± 0.40 g L–1) were the highest among the four diets. The crude protein contents for Artemia fed diets 2, 3 and 4 were 591.22 ± 30.15, 580.34 ± 22.42 and 533.27 ± 34.19 g kg–1, respectively, which were significantly higher than that of diet 1 (461.25 ± 10.33 g kg–1). The concentrations of free amino acids and the fatty acid compositions in the four diets were equal, except for the C24:0 content. The highly unsaturated fatty acid concentration of Artemia fed diet 2 was higher than those of the other three diets. It showed that microbial flocs produced from fish waste can be used for Artemia.  相似文献   

14.
In hatchery, an adequate supply of live food for first‐feeding fish larvae is essential and nutritional quality of live food organisms can be improved through nutrient enrichment. The use of live food organisms, especially at first feeding, is a requisite for most marine fish larvae. In ocean, marine fish larvae primarily feed on copepods, but the production protocols of copepods as live food is underdeveloped in hatchery. As the food ingestion and the digestive system of copepods are different from other live food organisms (e.g. rotifers), the nutrition enrichment procedures with emulsion oil used in rotifers is not effective on copepods. This review focuses on alteration of nutrient composition of copepods through manipulation of copepod food before they are fed to fish larvae. Specifically, we discuss the relationship between the changes of fatty acid compositions in dietary algae and in copepods. The review links nutrient supply to copepods and the change of nutrition in copepods and suggests ways to improve copepod nutrition in hatcheries.  相似文献   

15.
16.
李纯厚  齐占会 《水产学报》2023,34(11):119311-1-119311-16

我国是渔业大国,2022年水产品产量达6800多万t,其中养殖产量约占世界养殖总产量的60%。渔业在保障国家粮食安全与营养安全,尤其是优质蛋白质供给中发挥了极其重要作用,与此同时渔业生产活动对养殖水域和毗连自然海域生态环境的影响也备受关注。渔业生态环境学科主要研究渔业活动对自然水域生态系统的影响、气候变化和人类活动对渔业生产以及渔业水域生态环境的影响、以及受损渔业水域生态修复与生境恢复等基础科学和产业技术问题。本文概括性总结了我国渔业生态环境学科的主要研究领域,以及近十年来各领域所取得的重要进展,并对我国渔业生态环境学科未来发展方向进行了展望,提出了今后渔业生态环境学科的研究重点,以期为推动中国渔业生态环境保护,促进渔业可持续发展提供参考。

  相似文献   

17.
Abstract –  We examined whether solvent-based lipid extractions, commonly used for stable isotope analysis (SIA) of biota, alters δ 15N or δ 13C values of fish muscle tissue or whole juvenile fish. Lipid extraction from muscle tissue led to only small (<1‰) isotope shifts in δ 13C and δ 15N values. By contrast, ecologically significant shifts (+3.4‰ for δ 13C and +2.8‰ for δ 15N) were observed for whole juvenile fish. Sample variance was not affected by lipid extraction. For tissue-specific SIA, two sample aliquots may be required: a lipid-extracted aliquot for stable carbon isotope analysis when differing lipid content among tissues is a concern, and a nonextracted aliquot for δ 15N determination. Whole organism SIA is not recommended because of the mix of tissues having different turnover times; for very small fish, we recommend that fish be eviscerated, decapitated, and skinned to minimise differences with samples of muscle tissue.  相似文献   

18.
基于2018年春季和秋季在海州湾及邻近海域开展的渔业资源底拖网调查数据,构建了海州湾及其邻近海域的LIM-MCMC (linear inverse models using a Monte Carlo method coupled with Markov Chain)模型,对其生态系统能量流动和生态系统特征进行了研究,...  相似文献   

19.
Ecological complexity may improve ecosystem function, stability and adaptability to natural and anthropogenic disturbances. Intraspecific trophic variation can represent a significant component of total community variation and can influence food web structure and function. Thus, understanding how trophic niches are partitioned between intraspecific and interspecific processes could improve our understanding of food web dynamics. We examined gut contents, fatty acids and stable isotope ratios in round goby (Neogobius melanostomus) and yellow perch (Perca flavescens) across six sites in Lake Michigan, USA, to determine patterns in intra‐ and interspecific trophic composition (i.e., mean gut or fatty acid composition) and diversity (i.e., the diversity of gut items or fatty acids). We also examined relationships between fatty acid diversity and gut content characteristics to understand potential mechanisms shaping individual trophic phenotypes. There was significant variation in both trophic composition and diversity among sites, and individual and spatial variation was as important to total trophic variation as species identity. Round goby that consumed dreissenid mussels had more diverse fatty acid profiles than those that consumed other benthic invertebrates, whereas yellow perch fatty acid diversity was not related to gut content composition. Our results confirm that intraspecific variation in resource use can be as important to trophic dynamics as interspecific variation, and that spatial variation in lower level food web processes or habitat may strongly structure local food web dynamics. Individual‐level examination of trophic diversity, in concert with trophic composition, could provide additional information about the resilience, function and adaptability of local food webs.  相似文献   

20.
A one‐time monitoring event was initiated by an aquaculture fishery in North Queensland to assess if the discharges from the aquaculture fishery were increasing nutrient input into the Great Barrier Reef Marine Park. Leaf samples from Avicennia marina (grey mangrove) were used to compare the nitrogen (N) and phosphorous (P) concentrations, and δ15N values in the receiving waters of the adjacent creeks and a set of reference sites established in a neighbouring creek. The same indicators were also measured in macroalgae from the nutrient extraction ponds. The mangrove leaves in the Mixing Zone of the receiving creek were slightly elevated in N concentrations (22 mg g?1 compared to 17.5 mg g?1 at the Reference sites) and δ15N values (6.5 compared to 4.5 at the Reference sites) showing there was an influence from the outputs of the aquaculture fishery. However, P concentrations were the same in the Mixing Zone and Reference sites. Downstream of the Mixing Zone, the concentration of N and P, and the δ15N values in the Receiving Waters were the same as the Reference sites, at levels considered normal in other studies. These results show that aquaculture fisheries can be managed to maintain nutrients at reference levels in mangrove foliage in estuaries of the receiving zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号