首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper presents the results of an economic analysis of the aquaculture of two species of grouper E. coloides (orange‐spotted grouper, green grouper, red‐spotted grouper) and E. malabaricus (malabar grouper, black‐spotted grouper) for small producers in the Philippines. The findings of the analysis indicate that, based on the assumptions, grouper culture is financially feasible. However, the capital requirements for the broodstock, hatchery/nursery, and integrated system may be beyond the financial means of many small producers. These stages of grouper culture may need to be developed as a larger project by private investors or government. The capital investment requirement for grow‐out (not including purchase of transport boxes) is within the financial means of small producers. Loans or other incentives will need to be made available for the small producer, but the cash flow indicates that these loans can be repaid in the first year of production.  相似文献   

2.
Abstract

The objective was to evaluate the economic feasibility of introducing fish culture into irrigated cotton production on farms in central Arizona. Water as a production variable was calculated only for the additional quantity required to keep water in the ditches during the growing season for fish. Raising tilapia in pulsed‐flow culture systems on Arizona cotton farms is economically feasible. Production function estimates indicate that profits can be increased through additional use of feed. At any ditch capacity, a density of six fish/m3 provided the optimal economic results, as the value of marginal product (VMP) equalled the price of fingerlings stocked/m3. This optimum fish production scenario would increase the net income for a typical irrigated cotton farm by 7 per cent. Increasing the initial size of the fingerlings improved the percentage of fish reaching marketable size and perhaps will increase economic returns, a question to be studied by future research.  相似文献   

3.
4.
This study aims to develop a hybrid zero water discharge (ZWD) - recirculating aquaculture system (RAS) system to improve water quality, as well as the growth, survival, and productivity, of the super-intensive white shrimp culture under low salinity conditions at semi-mass and the industrial level. The study consisted of two parts: (1) a semi-mass trial for the optimization of shrimp production using a hybrid ZWD-RAS system with a total volume of 2.7 m3 at the different shrimp stocking densities of 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 and (2) an industrial trial at a commercial shrimp urban farming facility in Gresik, East Java, with total volume of 110 m3 at the optimum shrimp stocking density from the semi-mass trial. Both the semi-mass and industrial trials were performed in five steps: (1) preparation and installation of the RAS and ZWD system components; (2) preparation of microbial components including nitrifying bacteria, the microalgae Chaetoceros muelleri, and the probiotic heterotrophic bacteria Bacillus megaterium; (3) acclimatization of white shrimp post larvae from the salinity level of 32 ppt to 5 ppt; (4) conditioning of the biofilter used in the RAS and shrimp tank (microbial loop manipulation in ZWD); and (5) shrimp grow-out rearing for 84 days and 60 days for the semi-mass trial and the industrial trial, respectively. The hybrid system combined a ZWD system and an RAS. Shrimp tanks were conditioned with the addition of microbial components for ZWD at the beginning of the culture period. The RAS was operated when NH4+ and NO2-N levels in shrimp culture reached above 1 ppm until the levels decreased to 0–0.5 ppm. The culture performance in the semi-mass trial at 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 stocking densities was not significantly different for final mean body weight (12.06 ± 5.72, 11.84 ± 3.58, 12.04 ± 3.71 g/ind, respectively) and productivity (4.205 ± 0.071, 4.691 ± 0.025, 4.816 ± 0.129 kg/m3, respectively). Significant differences in survival (70 ± 7%, 53 ± 3%, 40 ± 4%, respectively) and feed conversion ratios (1.54 ± 0.01, 1.82 ± 0.00, 2.16 ± 0.03, respectively) were observed between the three different stocking densities. Water quality parameters and microbial loads during the semi-mass trial were similar for all stocking densities and were within the tolerance levels for white shrimp grow-out production. The results of the semi-mass trial showed that the hybrid ZWD-RAS system can maintain water quality and a microbial load up to a 1,000 PL/m3 stocking density; however, the optimum performance based on survival, feed conversion ratio, and productivity was reached at the 500 PL/m3 stocking density. The industrial trial of the application of the hybrid ZWD-RAS system using the optimal stocking density of 500 PL/m3 resulted in a comparable shrimp survival of 78% with a total production of 298 kg shrimp biomass (equal to a productivity level of 2.7 kg/m3). The overall results of both the semi-mass and industrial trials showed that the application of a hybrid ZWD-RAS system allows optimal shrimp survival and growth at the stocking density of 500 PL/m3 and has high potential for application in commercial shrimp grow-out production at low salinity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号