首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
小麦穗粒数是由多基因控制的复杂数量性状。为发掘控制小麦穗粒数(KNS)的真实主效数量性状位点(quantitative trait loci, QTL),本研究利用生物信息学手段,借助小麦高密度分子标记遗传图谱,对来自不同遗传作图群体的控制小麦穗粒数的163个QTL位点进行图谱整合、映射和元分析。结果表明,目标性状QTL在小麦21条染色体上不均匀分布,在2B染色体上最多,在7D染色体上最少;建立控制小麦KNS的QTL一致性图谱,最终获得35个一致性QTL(meta quantitative trait loci, MQTL)位点及其紧密连锁的候选分子标记,置信区间最小可达到0.55 cM。  相似文献   

2.
分枝角度是油菜重要株型性状.为筛选和发现适度紧凑的分枝角度调控基因,以提高产量利于机械化收获,以分枝角度差异显著的油菜品种Holly和APL01为亲本构建的重组自交系(RIL)群体为材料,在2个环境中对分枝角度进行QTL定位及候选基因分析.结果表明,RIL群体分枝角度表现出连续变异且呈正态分布.利用前期构建的高密度SN...  相似文献   

3.
大豆(Glycine max L.)的荚皮厚是影响大豆产量的重要因素,同时,大豆荚皮内含有丰富的蛋白质和纤维素等营养物质,是植物饲料的重要来源.因此,大豆荚皮厚性状的相关研究,对大豆的专用品种育种以及大豆深加工都具有重要意义.本研究利用ICIM法对CSSLs群体进行QTL定位,同时构建高低混池,利用ICIMapping...  相似文献   

4.
为辅助选育早熟油菜品种、克隆油菜开花期基因及开发花期分子标记,以已测序的油菜品种中双11 (Z) 和重测序的油菜品系No.73290 (N)为亲本构建的含184个单株的BnaZNF2群体为材料,通过分析该群体的基因型数据和F2:3家系连续三年(2010-2012)在武汉的表型数据,对开花期QTL进行检测和整合,定位到分布在11个连锁群上的14个开花期QTL。其中只有5个QTL能在3年中重复检测到,分别是qDtF.A2-1、qDtF.A6-2、qDtF.C2-1、qDtF. C2-2 和qDtF.C3-1,贡献率在7.1%~21.1%之间。通过查阅文献和在拟南芥、水稻等作物网站上搜索,搜集到442 个与植物开花期有关的基因。基于油菜基因组物理图谱,通过生物信息学分析,在本研究定位的QTL区间上筛选到54个可能的候选基因,可以用于开花期基因的克隆。在5个主要QTL区间内分别定位到8、5、4、2和4个候选基因,其中有15个双亲中存在序列差异,可以开发开花期的功能标记用于分子标记辅助选择育种。  相似文献   

5.
以玉米自交系ZNC442和SCML0849为亲本构建的131份F2:3家系为材料,结合简化基因组测序(GBS)的基因型鉴定结果与该群体在多环境下的株型评价数据,利用完备区间作图法对株高、穗位高、叶夹角、穗上叶片数、雄穗分枝数、雄穗主轴长等株型相关性状进行QTL定位。结果表明,2个环境下共检测到98个株型相关QTL,分布于10条染色体上。结合已公开的QTL定位信息,利用生物信息学分析筛选出5个控制株型相关性状的候选基因。Zm00001eb037290、Zm00001eb033500、Zm00001eb033600、Zm00001eb033610与株高相关,其编码的PosF21转录因子、E3泛素蛋白连接酶ATL6、丝氨酸/精氨酸丰富剪接因子和MYB102转录因子,分别通过参与赤霉素的合成、调节C/N反应、调控细胞分裂素变化等过程调控节间生长发育与植株大小。  相似文献   

6.
大豆对光周期极为敏感,单一品种的适应范围狭窄。大豆品种在不同纬度间的适应性与开花期密切相关。为了获得更多的大豆开花期相关QTL,了解在豆适应机制,利用开花主效位点E1~E4基因型均相同的滑皮豆和齐黄26(E1e2asE3-HaE4)杂交衍生的重组自交系群体及前期基于特异长度扩增片段测序(Specific Length Amplified Fragment-sequencing, SLAF-seq)构建的高密度遗传图谱,对大豆开花期性状进行了QTL定位。共获得了分布在7条染色体上的11个QTL位点,其中4个位点(qFT8,qFT20-2,qFT14qFT16)为本研究新发现的QTL。同时,研究发现6个QTL(qFT6-1,qFT8,qFT11-1,qFT19,qFT20-1qFT20-2)在2013年和2014年两个环境中稳定存在。对稳定QTL位点间的基因进行生物信息学分析,筛选出4个可能参与开花期调控的候选基因。本研究结果能够为阐明大豆适应性分子机制和广适性分子育种提供一定的理论基础。  相似文献   

7.
为了解西藏半野生小麦粒型性状的QTL差异,以西藏半野生小麦Q1028和郑麦9023(ZM9023)杂交后获得的重组自交系群体为试验材料,于2012、2013和2015年分别在四川农业大学温江试验田种植,对其粒型性状(粒长、粒宽、粒厚、长宽比、籽粒大小)进行遗传分析。结果表明,重组自交系群体粒型性状均呈正态分布,对籽粒大小的影响依次为粒宽、粒厚、粒长。在三个年度环境中,总共检测到33个控制小麦粒长、粒宽、粒厚、籽粒大小和长宽比的QTL位点。其中,13个控制粒长的QTL分布在1B、2B、2D(3个)、3A、4A、5B、6A、6B、7A(3个)染色体上,每个位点对表型变异的贡献率为5.37%~11.57%。6个控制粒宽的QTL分布在2B、2D、4A、5B、6A、7A染色体上,可以解释表型变异的6.43%~12.69%。3个控制粒厚的QTL位于2B和2D(2个)上,表型贡献率分别为12.75%、10.00%和8.49%。9个控制籽粒大小的QTL分别位于2B、2D(2个)、4A、5B、6A、7A(3个)染色体上,单个QTL可解释6.26%~14.69%的表型变异。另外,本研究还在2B、2D、4A、5B、6A、7A染色体上共发现7个QTL富集区,这些染色体上的QTL和富集区与籽粒性状密切相关,在育种中值得关注。其中,2B染色体上XwPt-3561~XwPt-6932分子标记区间内有控制粒长、粒宽、粒厚、籽粒大小的遗传位点,6A染色体上标记wpt-730109与wpt-7063之间有控制增加籽粒宽度和籽粒大小的位点。  相似文献   

8.
大豆种子在长期储存条件下发生老化,导致种子的品质降低、萌发力下降、幼苗活力变差,最终造成大豆大规模减产。种子耐储藏性是一个复杂的数量性状,受多基因控制。为了探究大豆种子耐储藏性机理,挖掘相关基因,以中豆27和九农20及其杂交衍生的112份重组自交系(Recombinant Inbred Lines, RIL)群体为材料,评价大豆种子耐储藏性,利用343 907个高质量的SNPs标记构建Binmap,定位大豆种子耐储藏相关性状的QTLs,并利用基因组、转录组、代谢组进一步分析。结果显示:本研究共得到31个QTLs,分布于大豆的10条染色体上。多组学联合分析共发现与种子耐储藏性相关的3个候选基因,并发现种子耐储藏性相关的通络包括黄酮类生物合成途径和亚油酸代谢等。研究结果为深入解析大豆种子耐储藏遗传本质和大豆耐储藏品种的培育提供理论依据和技术支持。  相似文献   

9.
10.
玉米穗行数性状QTL的元分析   总被引:2,自引:0,他引:2  
以MaizeGDB数据库中2008年发布的IBM 2 2008 Neighbors为参考遗传图谱,利用BioMercator2.1软件,将已报道的基于26个不同双亲分离群体于不同实验中定位的玉米穗行数QTL通过公共标记映射,整合到该图谱上,并对这些QTL进行Meta分析。在已报道的196个穗行数QTL中,以95%的置信区间为阈值,发掘出176个QTL的公共定位区间及其在公共图谱上的共有标记,发掘出25个“一致性”与效应值大于4.5的QTL,并整理了连锁标记。  相似文献   

11.
春小麦旗叶长度、宽度及叶绿素含量QTL分析   总被引:1,自引:0,他引:1  
为了提高高产和理想株型小麦的选育效率,以普通小麦(Triticum aestivum L.)宁春4号和宁春27号杂交得到的128个F9代重组自交系(RILs)为试验材料,利用从1 001个SSR标记中筛选出的307个在亲本之间存在多态性的标记对该群体进行遗传分析和QTL检测.构建了覆盖小麦21对染色体的包含291个SSR标记的遗传连锁图谱,遗传距离总计2 576.09 cM,标记间平均遗传距离为8.85 cM.以复合区间作图法(ICIM)分别对旗叶长度、宽度和叶绿素含量进行加性QTL检测,分别检测到6、8和4个QTL.多数QTL只在单一生态环境下检测到,说明这些性状受一定环境因素的影响.  相似文献   

12.
在干旱胁迫条件下,小麦营养器官暂贮性可溶性碳水化合物(Water-soluble carbohydrates,WSC)是小麦籽粒灌浆所需的重要碳源。为发掘控制小麦籽粒WSC含量的真实主效数量性状位点(Quantitative trait loci,QTL),利用生物信息学方法,借助小麦高密度分子标记遗传图谱,对来自不同遗传作图群体的控制小麦籽粒WSC含量的168个QTL位点进行图谱映射和元分析。结果发现,142个QTL定位区间与参考图谱有共有标记,其中92个QTL对籽粒WSC含量的表型变异具有增效效应,50个QTL具有减效效应。建立控制小麦籽粒WSC含量的QTL一致性图谱,获得16个"一致性"QTL(Meta quantitative trait loci,MQTL)位点及其连锁标记,MQTL置信区间最小达到0.77cM。  相似文献   

13.
为了明确小麦籽粒性状的遗传控制基础,以γ射线诱变结合花药培养创制的大粒、高蛋白小麦新种质H307及生产上主栽品种郑麦9023创建的含有310个株系的重组自交系为实验材料,利用QTL-ICIMapping V3.3软件构建了包含133对SSR标记的遗传连锁图谱,对千粒重、粒长、粒宽、籽粒面积、周长、粗蛋白和淀粉含量进行QTL分析,结果在两年环境条件下共检测到47个加性QTL和10个QTL富集区,其中6个千粒重QTL,分别位于1D、2B、3D、6D和7A染色体上,单个QTL可解释4.54%~13.14%的表型变异;31个粒形QTL,位于1B、1D、2B、3B、3D、5A、5D、6B、6D、7A和7D染色体上,单个QTL可解释2.90%~15.86%的表型变异;10个粗蛋白和淀粉含量QTL,分别位于1A、1B、4B和6A染色体上,单个QTL可解释3.64%~12.19%的表型变异。2B染色体上检测到1个贡献率较大且能稳定表达的重要染色体区段,该区段包含控制小麦千粒重、粒长、粒宽、籽粒面积和周长的10个QTL。1BL染色体上检测到1个控制籽粒粗蛋白含量的微效QTL,对表型的贡献率为3.64%,与连锁分子标记gwm818的遗传距离为0.22cM,该位点是一个不同于前人研究结果的新位点。  相似文献   

14.
小麦籽粒形态及千粒重性状的QTL初步定位   总被引:1,自引:1,他引:1  
为研究小麦籽粒形态及千粒重性状的QTL,以普通小麦6044和01-35为杂交组合构建的F8重组自交系(RIL)群体作为试验材料,在山东泰安(山东农业大学试验站)和莱阳(青岛农业大学试验站)两个环境下进行两年田间试验,利用Mapmaker/version 3.0和WinQTLCart软件通过复合区间作图法进行QTL初步定位,在两年两个环境下共检测到12个相关QTL位点,其中关于粒长的2个QTL分别位于2A和2B染色体上,可解释表型变异的25%和12%;4个粒厚QTL位于2A和6A染色体上,可解释表型变异的7%~10%;6个千粒重相关QTL位于染色体2A、4A和6A连锁群上,可解释表型变异的6%~25%;而粒宽QTL在两个地点上都没有检测到。其中相关性高的性状间有一些共同的QTL,表现出一因多效或紧密连锁效应。  相似文献   

15.
为了解新疆小麦品种籽粒硬度概况和puroindoline基因等位变异类型及其分布,以121份新疆冬、春小麦品种(包括51份农家品种和70份育成品种)为材料,采用单粒谷物特性测试仪(SKCS)和分子标记技术,对其SKCS硬度及puroindoline基因型进行了测试和鉴定。结果表明,新疆小麦硬度变化范围较大,以硬质麦为主,占61.2%。冬性农家品种籽粒硬度高于春性农家品种,冬、春小麦育成品种籽粒硬度基本相同(60.6和60.8)。新疆小麦puroindoline基因的类型丰富,共检测到野生型(Pinb-D1 a)、Pina-D1 b、Pinb-D1 b、Pinb-D1 p、Pinb-D1 ab和Pinb-D1 ac6种类型。硬质麦以Pina-D1 b、Pinb-D1 p、Pinb-D1 b3种突变类型为主,其频率分别为33.8%、31.1%和28.4%。冬性农家品种含有3种类型,以Pina-D1 a/Pinb-D1 b类型居多,春性农家品种含有4种类型,以野生型(Pina-D1 a/Pinb-D1 a)为主,冬、春麦育成品种含有4种常见类型,其中冬麦以Pinb-D1 b类型为主,其频率为39.5%,春麦以Pina-D1 b(PINA缺失)类型为主,其频率为59.4%。另外,冬性农家品种中有4个品种属于Pina-D1 a/Pinb-D1 ab类型,春性农家品种中有1个品种属于Pina-D1 a/Pinb-D1 ac类型,均属硬质麦的稀有突变类型。不同puroindoline基因型的籽粒硬度大小也存在差异,其中Pinb-D1 ab突变型的硬度值最高,Pinb-D1 a最低,并且Pina-D1 b、Pinb-D1 b和Pinb-D1 p3种硬质类型的籽粒硬度没有显著性差异。  相似文献   

16.
为了挖掘在多水分环境中能够稳定表达的小麦穗粒数QTL,以洛旱2号和潍麦8号及其衍生的302 个F8:9重组自交系(RIL)为材料,分别在3个干旱和3个正常灌溉模式下,对穗粒数QTL进行定位分析,结果检测到24个加性QTLs,位于16个位点,分布于2B、3A、3B、3D、4A、4B、5A、5B、6B和7B共10条染色体上,单个QTL可解释3.70%~20.43%的表型变异。在充分灌溉条件下的三个环境(E1、E2和E3)中,共有14个QTLs,11个位点被检测到;在限制水分的三个环境(E4、E5和E6)中共有10个QTLs,6个位点被检测到。在所有检测到的16个位点中,有9个位点只在灌溉环境下被检测到,有5个位点只在旱作环境下被检测到,有2个位点在灌溉和旱作环境下同时被检测到。位于3A染色体上标记Xbarc012和 Xgpw2266之间的 Qknps-WL-3A,同时在E1、E4、E5和E6环境中被检测到,其中三个环境可解释大于10%的表型变异,且在所有的旱作环境中能够稳定表达,可以作为分子标记辅助选择的候选位点,用于辅助选育节水高产小麦新品种。  相似文献   

17.
为了探索小麦生理成熟后籽粒脱水速率的遗传机制,以扬麦16、镇麦168、扬麦20和扬麦22为亲本构建四亲本RIL群体,利用小麦15K SNP芯片构建其遗传连锁图谱,并对小麦籽粒脱水速率QTL进行定位。结果共检测到12个与小麦籽粒脱水速率相关的QTL,分布在1AL(2)、2AL、3BS、3BL、4AS、5BL、6DL、7AL、7BS、7BL和7DS,其中 QDR-yaas-6DL、 QDR-yaas-1AL.1和 QDR-yaas-3BL脱水速率增效基因仅来自扬麦16,可分别解释表型变异的8.1%、7.6%和2.8%; QDR-yaas-1AL.2, QDR-yaas-2AL, QDR-yaas-4AS和 QDR-yaas-7DS脱水速率增效基因仅来自镇麦168,可解释表型变异的3.6%~4.2%; QDR-yaas-5BL脱水速率增效基因仅来自扬麦20,可解释表型变异的5.4%; QDR-yaas-3BS和 QDR-yaas-7BS脱水速率增效基因来自扬麦20和扬麦16,可解释表型变异的3.2%和3.8%; QDR-yaas-7AL和 QDR-yaas-7BL脱水速率增效基因来自镇麦168和扬麦16,可解释表型变异的4.8%和5.9%。推测扬麦16、镇麦168脱水速率快的特性遗传于扬麦158。本研究结果将为小麦生理成熟后籽粒脱水性状的深入研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号