首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: A new water‐resistant fire ant bait (T‐bait; cypermethrin 0.128%) consisting of dried distillers grains with solubles (DDGS) as a carrier was developed and evaluated against a standard commercial bait (Advion®; indoxacarb 0.045%) under both laboratory and field conditions. RESULTS: When applying the normal T‐bait or Advion® in the laboratory, 100% of Solenopsis invicta Buren worker ants were killed within 4 days. However, when the T‐bait and Advion® were wetted, 70.6 and 39.7% of the ants were killed respectively. Under field conditions, dry T‐bait and dry Advion® had almost the same efficacy against ant colonies. However, when T‐bait and Advion® came in contact with water, the former's ability to kill S. invicta colonies in the field was only marginally reduced, while Advion® lost virtually all of its activity. In addition, DDGS was also shown to be compatible with a number of other insecticides, such as d‐allethrin, permethrin and pyrethrin. CONCLUSION: Based on its properties of remaining attractive to the fire ants when wetted, combined with its ant‐killing abilities both in the laboratory and in the field, T‐bait is an efficient fire ant bait, especially under moist conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The tomato borer, Tuta absoluta (Meyrick), was first recorded in Turkey in August 2009 and rapidly became a serious pest in the Mediterranean and Aegean coastal regions in field and greenhouse grown tomatoes. Currently, insecticides are considered one of the major tools for the management of T. absoluta in Turkey. This study, investigated the efficacy of 7 different insecticides, against T. absoluta in laboratory bioassays. To determine the lethal concentration (LC) values and feeding activity of the larvae, tomato leaf parts mined by 1–3 day old L1 larvae were dipped into different insecticide concentrations. Mortality was recorded 5 days after insecticide treatments. Spinosad, chlorantraniliprole + abamectin or indoxacarb treatment resulted in 100% mortality with minimal or no feeding in all populations at their recommended doses of 120, 50.4 and 60 mg a.s. L?1, respectively. In general, the LC99 values of populations for these insecticides were similar and also lower than that of the recommended field doses. The effect of pyridalyl was low, resulting in low mortality with serious feeding damage at the dose of 125 mg a.s. L?1. The efficacies of abamectin, metaflumizone and azadirachtin were found to be moderate to low at the recommended doses (4.5, 240 and 50 mg a.s. L?1, respectively). However, these insecticides may affect pupation and adult emergence rates hence further studies are recommended to investigate these insecticides.  相似文献   

3.
Mixed colonies of adult male and female Oriental cockroaches were conditioned to a 12:12 h photocycle in arenas (0.23 m2) with a harbourage, food and water and then exposed to deposits (30 mg or 2 × 30 mg) of 0.5 g kg−1 fipronil gel bait at the beginning of a dark phase. The bait was rapidly consumed by the first sub‐group of insects to emerge from the harbourage; any residual bait was removed from the arenas 4 h into the following light phase. Third‐instar nymphs were then introduced and mortality was monitored over the subsequent 14 days with all cadavers left in situ. Death of cockroaches under these conditions was due to direct poisoning of the sub‐group of the adults that consumed the bait and to secondary transfer of toxicity to the remainder of the adult and to the nymphal populations. Mean mortality in the adult populations increased to > 96% (females) and > 53% (males) with consistently higher mortality of females than males; that in the third‐instar nymph (unexposed) populations increased to 25–50%. Some cadavers were wholly or partially eaten by other cockroaches during this period, and this was interpreted as the major mechanism of secondary transfer of toxicity. Individual adult females were fed weighed bait deposits (10 mg) and, following death (24 h), the cadavers were transferred to closed containers held at 33%, 52% or 76% relative humidity /28 °C for periods of up to 7 weeks. They were then added individually to groups of five adult females provided with water but no alternative food source. Mean mortalities (>64% at 1 week and > 96% at 7 weeks) were not significantly lower than mean mortalities produced by freshly poisoned cockroaches, showing that no loss in the insecticidal activity of the cadavers occurred under these storage conditions. The potential of necrophagy to supplement the primary action of fipronil bait treatment of Oriental cockroach infestations by inhibiting colony redevelopment is discussed. © 2000 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Development of attract‐and‐kill bait stations for pest fruit flies has been limited by the water solubility of sugar needed as a feeding stimulant and by the volatility of chemical attractants. A wax‐based matrix was developed that provides the longevity needed for field use and is biodegradable. RESULTS: Laboratory bioassays with the Caribbean fruit fly, Anastrepha suspensa (Loew), confirmed the efficacy of bait stations containing avermectin, methomyl, spinosad and phloxine B. Field cage studies demonstrated that significant mortality occurred with either 1% (w/v) spinosad or 1% (w/v) methomyl bait stations versus pesticide‐free bait stations. Bait stations were exposed to environmental conditions by placing them in trees at the ARS station in Miami, Florida, between tests. There was no loss in efficacy, in spite of exposure to over 360 mm of rainfall over the 56 days of the study, indicating that the bait stations could provide population suppression for at least 1–2 months when used in subtropical environments. CONCLUSION: A long‐lasting, female‐targeted fruit fly bait station, such as the one developed herein, could provide a cost‐effective option for fruit fly population suppression that would be an important tool in tephritid pest management and control. Additional studies are needed to demonstrate efficacy against wild fruit fly populations and determine deployment strategies. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The tobacco whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) which occurs in various parts of the world, has developed a high degree of resistance against several chemical classes of insecticide, including organophosphates, carbamates, pyrethroids, insect growth regulators and chlorinated hydrocarbons. The present studies were done in order to monitor the susceptibility of whitefly populations in southern Spain to insecticides commonly used there. Systemic bioassays using Spanish field populations of B tabaci collected in 1994, 1996 and 1998 indicated an increase, albeit a slow one, in resistance to imidacloprid over this period. Comparative studies of other neonicotinoids using the same bioassay revealed a high degree of cross‐resistance to acetamiprid and thiamethoxam. Leaf‐dip bioassays with adult females from these populations revealed a high level of resistance to cyfluthrin, endosulfan, monocrotophos, methamidophos, and pymetrozine, each at 200 mg litre−1. Buprofezin and pyriproxyfen were tested against second‐instar nymphs and eggs, respectively. Buprofezin also showed a lower efficacy against ESP‐98, a strain of B tabaci received from Almeria in 1998, but pyriproxyfen resistance was not obvious when tested against eggs of strain ESP‐98. Field trials in 1998 revealed good efficacy of imidacloprid in one farm in the Almeria region and two greenhouses in Murcia and Sevilla, but a loss of activity by imidacloprid in another farm in the Almeria region. Cross‐resistance between imidacloprid and thiamethoxam was also confirmed under field conditions. © 2000 Society of Chemical Industry  相似文献   

6.

BACKGROUND

Transgenic maize (Zea mays L.) event TC1507 (Herculex® I insect protection), expressing Cry1F δ‐endotoxin derived from Bacillus thuringiensis var. aizawai, was commercialized in 2003 in the Americas. Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) susceptibility to Cry1F was monitored annually across several regions in Argentina using diagnostic concentration bioassays. Reduced performance of TC1507 maize against S. frugiperda was reported in 2013. A resistant population was established in the laboratory and the dominance of Cry1F resistance was characterized.

RESULTS

During 2012–2015, high‐survivorship of several populations was observed in the resistance monitoring program. Reciprocal crosses of a Cry1F‐resistant population with a Cry1F‐susceptible population were evaluated to calculate effective dominance (DML) based on mortality levels observed at 100 µg/ml Cry1F. Two additional dominance levels (DLC and DEC) were calculated using lethal (LC50) or effective concentration (EC50) derived from concentration–response bioassays. Estimates indicated that Cry1F resistance in S. frugiperda in Argentina was either highly recessive (DML = 0.005) or incompletely recessive (DLC < 0.26 and DEC < 0.19).

CONCLUSION

This study is the first documented confirmation and characterization of S. frugiperda Cry1F field‐evolved resistance in Argentina. The resistance to Cry1F in S. frugiperda populations collected in Argentina, is autosomal and incompletely recessive similar to the resistance reported in Brazil. © 2017 The Authors. Pest Management Science published by John Wiley © Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

7.

Toxicities of indoxacarb on eggs and 5-day-old larvae of diamondback moth, Plutella xylostella L., on cabbage and those of field-aged leaf residues on 5-day-old larvae were determined in the laboratory. The persistence and efficacies of indoxacarb and two other newer insecticides (spinosad and emamectin benzoate) to P. xylostella were tested under field conditions. Results from laboratory bioassays indicate that indoxacarb was highly toxic to P. xylostella larvae through food ingestion, with LC50 and LC90 values of 24.1 and 90.1 mg AI l - 1, respectively. However, indoxacarb had no significant effects on eggs and larvae through direct contact compared with water control. The toxicity of field-aged leaf residues of indoxacarb (0-, 3-, 5-, 7-, 10-, 14-, 17- and 21-day-old residues) declined slowly and gradually under the field conditions in South Texas. Almost all larvae died on day 5 after feeding on the leaves with 0 - 14-day residue, and the mortalities were as high as 94 and 78% for the 14- and 17-day-old leaf residues. With one application, indoxacarb suppressed P. xylostella larvae below the economic threshold for 14 - 21 days. Two field trials showed that indoxacarb at 0.05 - 0.07 kg AI ha - 1 was effective against P. xylostella, providing marketable cabbage with three applications per season. In addition, indoxacarb was as effective as spinosad, and significantly more effective than emamectin benzoate.  相似文献   

8.
BACKGROUND: Tuta absoluta(Meyrick) is one of the most serious pests of tomato recently introduced in the Mediterranean region. A novel bioassay method designed for the accurate determination of insecticide toxicity on T. absoluta (IRAC method No. 022) was validated by three different laboratories [Greece (NAGREF), Italy (UC) and Spain (UPCT)] on European populations. RESULTS: The insecticides indoxacarb and chlorantraniliprole were used as reference products. The IRAC leaf dip method is easy to perform, producing repeatable, homogeneous responses. LC50 values for indoxacarb ranged between 1.8 and 17.9 mg L?1 (NAGREF), 0.93 and 10.8 mg L?1 (UC) and 0.20 and 0.70 mg L?1 (UPCT), resulting in a tenfold, 12‐fold and fourfold difference between the least and most susceptible populations at each laboratory respectively. For chlorantraniliprole, LC50 values ranged between 0.10 and 0.56 mg L?1 (NAGREF), 0.23 and 1.34 mg L?1 (UC) and 0.04 and 0.24 mg L?1 (UPCT), resulting in a sixfold difference in all three cases. Overall, UPCT reported lower mean LC50 to indoxacarb, while UC reported higher LC50 to chlorantraniliprole. CONCLUSIONS: The new bioassay is reliable, providing a useful tool in the design of IRM strategies. Within each country/lab, the variability observed in the results for both indoxacarb and chlorantraniliprole can be attributed to natural variation. Future research is necessary to determine the extent to which it is possible to compare results among laboratories. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
BACKGROUND: This study was initiated to search for fungal candidates for microbial control of brown planthopper (BPH) Nilaparvata lugens Stål, to which little attention has been paid in the past two decades. RESULTS: Thirty‐five isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and M. flavoviride Gams & Rozsypal from different host insects worldwide were bioassayed for their lethal effects against third‐instar BPH nymphs at 25 °C and a 14:10 h light:dark photoperiod at ca 1000 conidia mm?2. On day 9 post‐treatment, mortality attributable to mycosis ranged from 6.5 to 64.2% and differed significantly among the tested isolates with no apparent relationship to their host origin. Only two BPH‐derived M. anisopliae isolates from the Philippines (ARSEF456) and Indonesia (ARSEF576) killed > 50% of the nymphs. Both isolates were further bioassayed for time–concentration–mortality responses of the nymphs to the sprays of 19–29, 118–164 and 978–1088 conidia mm?2 in repeated bioassays. The resultant data fitted a time–concentration–mortality model very well. Their LC50 values were estimated as 731 and 1124 conidia mm?2 on day 7 and fell to 284 and 306 conidia mm?2, respectively, on day 10. CONCLUSION: The two M. anisopliae isolates are potential biocontrol agents of BPH for further research. This is the first report of the lethal effects of global Metarhizium isolates on the rice pest. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
BACKGROUND: The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour‐phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. RESULTS: Horseradish oil (24 h LC50, 1.54 µg cm?2) and allyl isothiocyanate (2.52 µg cm?2) were highly toxic. Benzyl isothiocyanate (LC50, 0.62 µg cm?2) was the most toxic compound, followed by 4‐chlorophenyl, 3‐bromophenyl, 3,5‐bis(trifluoromethyl)phenyl, cyclohexyl, 2‐chlorophenyl, 4‐bromophenyl and 2‐bromophenyl isothiocyanates (0.93–1.41 µg cm?2). All were more effective than either benzyl benzoate (LC50, 4.58 µg cm?2) or dibutyl phthalate (24.49 µg cm?2). The structure‐activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour‐phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. CONCLUSION: In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil‐derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Plant essential oils have been recognised as an important natural source of insecticide. This study analysed the chemical constituents and bioactivity of essential oils that were isolated via hydrodistillation from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) against eggs, second instar and adults of Nezara viridula (L.). RESULTS: The major component of oregano was p‐cymene, and, for thyme, thymol. The ovicidal activity was tested by topical application; the essential oil from thyme was more effective. The fumigant activity was evaluated in an enclosed chamber; the LC50 values for oregano were 26.8 and 285.6 µg mL?1 for nymphs and adults respectively; for thyme they were 8.9 µg mL?1 for nymphs and 219.2 µg mL?1 for adults. To evaluate contact activity, a glass vial bioassay was used; the LC50 values for oregano were 1.7 and 169.2 µg cm?2 for nymphs and adults respectively; for thyme they were 3.5 and 48.8 µg cm?2 respectively. The LT50 analyses for contact and fumigant bioassays indicated that thyme was more toxic for nymphs and adults than oregano. Both oils produced repellency on nymphs and adults. CONCLUSION: These results showed that the essential oils from O. vulgare and T. vulgaris could be applicable to the management of N. viridula. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Genetically modified MON 87701 × MON 89788 soybean (Glycine max), which expresses the Cry1Ac and EPSP‐synthase proteins, has been registered for commercial use in Brazil. To develop an Insect Resistance Management (IRM) program for this event, laboratory and field studies were conducted to assess the high‐dose concept and level of control it provides against Anticarsia gemmatalis and Pseudoplusia includens. RESULTS: The purified Cry1Ac protein was more active against A. gemmatalis [LC50 (FL 95%) = 0.23 (0.15–0.34) µg Cry1Ac mL?1 diet] than P. includens [LC50 (FL 95%) = 3.72 (2.65–4.86) µg Cry1Ac mL?1 diet]. In bioassays with freeze‐dried MON 87701 × MON 89788 soybean tissue diluted 25 times in an artificial diet, there was 100% mortality of A. gemmatalis and up to 95.79% mortality for P. includens. In leaf‐disc bioassays and under conditions of high artificial infestation in the greenhouse and natural infestation in the field, MON 87701 × MON 89788 soybean showed a high level of efficacy against both target pests. CONCLUSIONS: The MON 87701 × MON 89788 soybean provides a high level of control against A. gemmatalis and P. includes, but a high‐dose event only to A. gemmatalis. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Resistance to insecticides has been related to application history, genetic factors of the pest and the dynamic within the treated area. The aim of this study was to assess the geographic variation in azinphos‐methyl response and the role of esterase and cytochrome P450 monooxygenase enzymes in codling moth populations collected within different areas of the Río Negro and Neuquén Valley, Argentina. RESULTS: Diapausing field‐collected populations showed resistance ratios at the LC50 that were 0.7–8.7 times higher than that of the susceptible strain. Mean esterase (EST) and cytochrome P450 monooxygenase activities (expressed as α‐N min?1 mg?1 prot?1 and pg 7‐OHC insect?1 min?1 respectively) were significantly correlated with LD50 values from the field‐collected populations. In addition, azinphos‐methyl response was associated with the geographic area where the insect population was collected: populations from isolated and more recent productive areas presented significantly lower resistance ratios in comparison with populations from older and more intensive productive areas. CONCLUSION: The populations assayed presented different resistance levels to azinphos‐methyl. The response was highly correlated with the orchard's geographic location. EST and ECOD activities were involved in azinphos‐methyl response in the given region. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
A local isolate of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), Bacillus thuringiensis subsp. kurstaki and chlorantraniliprole were assessed against six field populations of tomato fruitworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in a series of laboratory bioassays. Two dose rates of B. thuringiensis (0.5, 1 μg g?1), one of both M. anisopliae (1.3?×?106 conidia ml?1) and chlorantraniliprole (0.01 ppm) were applied alone and in combination with each other against 2nd, 3rd, 4th and 5th larval instars. The mortality was observed every 24 h until pupation. The bioassays were carried out at 25°C and 75% r.h. The highest mortality was observed in Rawalpindi with the lowest pupation rate by applying the combined concentrations of B. thuringiensis and chlorantraniliprole. The lowest mortality was observed in population from Gujranwala among all the tested populations. The antagonistic interaction was noted where the high dose rate of B. thuringiensis was combined with M. anisopliae; however, the remaining interactions enhanced the mortality and reduced the percent pupation. The overall results demonstrated that all the treatments gave significant control of the larval instars of H. armigera. The population from Gujranwala proved least susceptible whereas the one from Rawalpindi was highly susceptible.  相似文献   

15.
BACKGROUND: This project assessed the potential hazards of different classical and novel acaricides against an important non‐target and beneficial insect for the pollination of wild flowers and cultivated crops, the bumblebee Bombus terrestris (L). Twenty‐three acaricides used commercially in the control of phytophagous mites (Acari) were tested in greenhouses and/or the open field. Side effects included acute mortality and also sublethal effects on nest reproduction. The different compounds were administered in the laboratory via three different worst‐case field scenario routes of exposure: dermal contact and orally via the drinking of treated sugar water and via treated pollen. The compounds were tested at their respective maximum field recommended concentration (MFRC), and, when strong lethal effects were observed, a dose–response assay with a dilution series of the MFRC was undertaken to calculate LC50 values. RESULTS: From the different acaricide classes, several chemistries caused high levels of acute toxicity in bumblebee workers, especially bifenthrin and abamectin which resulted in 100% mortality by contact. In addition, several acaricides tested were found to have a detrimental effect on drone production. For oral exposures via treated sugar water, the dose–response assay showed the LC50 values for abamectin, bifenazate, bifenthrin and etoxazole to be 1/15 MFRC (1.17 mg AI L?1), 1/10 MFRC (9.6 mg AI L?1), 1/83 MFRC (0.36 mg AI L?1) and 1/13 MFRC (4.4 mg AI L?1) respectively, indicating that their use should be carefully evaluated. CONCLUSION: Overall, the results suggest that most of the acaricides tested are compatible with bumblebees, with the exceptions of abamectin, bifenazate, bifenthrin and etoxazole. However, the risks also depended on the type of treatment. As a result, the sugar water treatment seems to present the worst‐case situation of exposure, indicating that this approach is suitable for determining the hazards of pesticides against bumblebees. Finally, it is suggested that future tier testing under more field‐related conditions is required for a final decision of their risks. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Imidacloprid is the primary insecticide for controlling the tobacco‐adapted form of the green peach aphid (TGPA), Myzus persicae (Sulzer), a major pest of tobacco worldwide. This study used leaf‐dip bioassays to assess TGPA resistance to imidacloprid in the eastern United States from 2004 through 2007. RESULTS: When combined over the 4 year study, 18, 14 and 3% of the TGPA had imidacloprid resistance ratios (RRs) of 10–20‐fold, 20–30‐fold and 30–90‐fold, respectively, compared with the most susceptible colony tested. This indicates that some colonies have developed moderate levels of resistance to imidacloprid. A colony collected near Clayton, North Carolina, had the highest RR of 91 (LC50 value = 31 mg L?1). This resistance declined for six tests over a 3 year period in the laboratory culture from >130‐fold RR (LC50 = 48 mg L?1) to 40‐fold RR (LC50 = 15 mg L?1). Over the same period, the most susceptible colony and a standard colony not exposed to imidacloprid for over 7 years had consistently low LC50 values. CONCLUSION: Moderate levels of resistance to imidacloprid are noticed among TGPA colonies from the eastern United States. The variation in resistance indicates that the factors responsible are present in the populations at low frequencies and are just not enough to cause field failures yet. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The insecticidal activity of a cockroach gel bait containing a chitin synthesis inhibitor, noviflumuron, was evaluated using laboratory and field strains of the German cockroach, Blattella germanica (L.). Noviflumuron gel bait (0.01-5 mg g(-1)) caused > or = 90% nymphal mortality to laboratory and field strains of B. germanica in choice tests after 11 and 19 days of continuous exposure respectively. In 1 m x 1 m bioassay arenas, laboratory strain B. germanica population levels exposed to 5 mg g(-1) noviflumuron bait or 0.1 mg g(-1) fipronil gel bait were significantly lower than untreated population levels after 3 weeks and 1 week of exposure respectively. Various noviflumuron bait exposure periods (2, 4 and 7 weeks) caused similar population reductions, with a mean of 99.3 (+/- 0.3)% at 7 weeks. Fipronil gel bait caused 100% population reduction at 2 weeks post-exposure. The control population increased 89.0% at 7 weeks. In a simulated kitchen experiment with mixed stage laboratory populations, cockroach trap catches decreased 96.8 (+/- 2.0)% at 8 weeks in the 0.5 mg g(-1) noviflumuron bait treatment. The trap catches in the control increased 506.5 (+/- 493.7)% during the same period. Trap catch reduction by 0.1 mg g(-1) fipronil gel bait reached 100% at 4 weeks. Noviflumuron bait caused significantly lower nymph/total ratios to B. germanica populations in bioassay arenas from 2 weeks after exposure, demonstrating its effectiveness as a control agent for B. germanica with a pattern of activity similar to that expected from a chitin synthesis inhibitor.  相似文献   

18.
Rock hyraxes (Procavia capensis) were individually caged and were given two second-generation anticoagulants, difenacoum and difethialone, in fresh sliced apple bait. Mortality caused by 0.1-0.2 g kg?1 difenacoum bait was rather low: 0/6, 1/4 and 2/4 only. As a relatively high concentration in the bait was required, the use of difenacoum in the field is not possible because of environmental considerations. Mortality caused by 0.05 g kg?1 difethialone bait was 5/6, and by 0.065 g kg?1 6/6. The potential of using difethialone in the field is uncertain because of the prolonged treatment needed.  相似文献   

19.
BACKGROUND: Phytophagous mites such as the European red mite, Panonychus ulmi (Koch), are serious pests in European fruit tree orchards, and a number of acaricides are frequently used to control them. Spirodiclofen (Envidor®) has been a commonly used acaricide for several years. In the present study, European field populations collected in 2009 and 2010 were checked for their susceptibility to spirodiclofen by using discriminating dose and full dose response bioassays. RESULTS: In 2009 and 2010, a total of 63 field populations (including winter eggs) of European red mites were collected in different European countries, and in several populations from south‐western Germany a shifting in susceptibility against spirodiclofen was observed. Full dose response bioassays on different developmental stages of field‐collected strains suggested an age‐dependent expression of resistance because eggs remain fully susceptible to spirodiclofen. Artificial selection with spirodiclofen of one of the field strains resulted in resistance ratios of > 7000. Synergism studies suggest a possible role of cytochrome‐P450‐dependent monooxygenases in spirodiclofen detoxification. Most of the other acaricides from different chemical classes displayed no or low cross‐resistance in a spirodiclofen‐selected strain. CONCLUSION: In order to preserve spirodiclofen as an important tool in spider mite resistance management, the efficacy situation should be continuously monitored, and it is suggested that spirodiclofen be alternated with acaricides coming from different mode‐of‐action classes. An observed age‐specific expression of resistance revealed full susceptibility of eggs, so targeting spirodiclofen particularly against eggs is likely to reduce the selection pressures imposed on other life stages. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: A biosurfactant, surfactin, produced by a strain of Bacillus subtilis subsp. subtilis (VCRC B471), was effective in killing mosquito larval and pupal stages. As it was lethal to the non‐feeding pupal stage, it was presumed that it could kill the adult mosquitoes also. In this study, the adulticidal effect of the biosurfactant was assessed in the laboratory against a malaria vector, Anopheles stephensi. RESULTS: The biosurfactant surfactin, separated from the culture supernatant of the production strain, showed mosquito adulticidal activity when tested as ultralow‐volume (ULV) spray in a Peet‐Grady chamber. Knockdown activity and mortality were found to increase with increasing surfactin dosage. Knockdown dosage (KD) and lethal dosage (LD) were calculated by statistical analysis. The KD50 and KD90 dosages were 10.73 and 26.39 mg m?3 respectively. The LD50 and LD90 dosages were 16.13 and 39.21 mg m?3. The average droplet size of B. subtilis surfactin was 17.5 ± 1.07 µm. CONCLUSION: The present study indicates that the biosurfactant surfactin, produced by B. subtilis subsp. subtilis (VCRC B471), is a potential bioadulticide for ULV spray against malaria‐transmitting Anopheles stephensi mosquitoes. This is the first report of a mosquito adulticide from a microbial source. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号