首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insecticidal activities of essential oil extracts from leaves and flowers of aromatic plants against fourth-instar larvae of the mosquito Culex pipiens molestus Forskal were determined. Extracts of Myrtus communis L were found to be the most toxic, followed by those of Origanum syriacum L, Mentha microcorphylla Koch, Pistacia lentiscus L and Lavandula stoechas L with LC50 values of 16, 36, 39, 70 and 89 mg litre-1, respectively. Over 20 major components were identified in extracts from each plant species. Eight pure components (1,8-cineole, menthone, linalool, terpineol, carvacrol, thymol, (1S)-(-)-alpha-pinene and (1R)-(+)-alpha-pinene) were tested against the larvae. Thymol, carvacrol, (1R)-(+)-alpha-pinene and (1S)-(-)-alpha-pinene were the most toxic (LC50 = 36-49 mg litre-1), while menthone, 1,8-cineole, linalool and terpineol (LC50 = 156-194 mg litre-1) were less toxic.  相似文献   

2.
The insecticidal activities of essential oil extracts from leaves, flowers and roots of aromatic plants against fourth-instar larvae of the mosquito Culex pipiens molestus Forskal were determined. Extracts of Foeniculum vulgare Mill were the most toxic, followed by those of Ferula hermonis Boiss, Citrus sinensis Osbeck, Pinus pinea L, Laurus nobilis L and Eucalyptus spp with LC50 values of 24.5, 44.0, 60.0, 75.0, 117.0 and 120.0 mg litre(-1), respectively. Combination tests between the LC50 and the maximum sub-lethal concentration (MSLC) were determined. Over 20 major components were identified in extracts from each plant species tested. Five essential oils and nine pure components were studied for their repellency against mosquito bites. Terpineol and 1,8-cineole were the most effective against Culex pipiens molestus bites offering complete protection for 1.6 and 2 h, respectively.  相似文献   

3.
4.
5.
The efficacy of insecticide mixtures of permethrin (pyrethroid) and propoxur (carbamate) was tested by larval bioassays on two strains of Culex quinquefasciatus (Say), one resistant to pyrethroids and the other resistant to carbamates. The method consisted in combining one insecticide at the highest concentration causing no mortality (LC0) with increasing concentrations of the second one. The concentration-mortality regression lines were determined for permethrin and propoxur alone and in combination, and synergism ratios (SR) were calculated in order to determine the magnitude of an increase or decrease in efficacy with use of the mixtures. With the pyrethroid-resistant strain (BK-PER), the results showed that propoxur at LC0 significantly enhanced the insecticidal activity of permethrin (SR50 = 1.54), especially on the upper range of the concentration-mortality regression. Conversely, when permethrin at LC0 was tested with propoxur against the carbamate resistant strain (R-LAB), an antagonistic effect was observed (SR50 = 0.67). With the BK-PER strain, an increased oxidative detoxification (MFO) appeared to be the main mechanism responsible for the synergistic interaction. Nevertheless, antagonism in the R-LAB strain is probably due to a physiological perturbation implying different target sites for pyrethroid (ie sodium channel) and carbamate insecticides [ie acetylcholinesterase (EC 3.3.3.7) and choline acetyltransferase (EC 2.3.1.6)].  相似文献   

6.
7.
Patch and skin bioassays were used in laboratory and indoor tests to evaluate the repellency of (E)-cinnamaldehyde, identified in Cinnamomum cassia Blume bark and essential oil, and a cream containing 5% (w/w) cassia oil against Aedes aegypti (L.) females. Results were compared with those of a known C. cassia compound cinnamyl alcohol, N,N-diethyl-m-toluamide (DEET) and two commercial repellents: MeiMei cream containing citronella and geranium oils and Repellan S aerosol containing 19% DEET. In patch bioassay tests with A. aegypti females, (E)-cinnamaldehyde at 0.153 mg cm(-2) and DEET at 0.051 mg cm(-2) provided 93 and 89% protection at 40 min after exposure. In skin bioassay tests, (E)-cinnamaldehyde at 0.051 mg cm(-2) and DEET at 0.025 mg cm(-2) provided 87 and 95% protection at 30 min after application. (E)-Cinnamaldehyde was significantly more effective than cinnamyl alcohol in both bioassays. In indoor tests with four human volunteers, 5% cassia oil cream provided 94, 83 and 61% protection against A. aegypti females exposed for 30, 50 and 70 min after application respectively. Cassia oil cream was a slightly less effective repellent than MeiMei cream. Repellan S aerosol provided 91% repellency at 120 min after application. Products containing cassia oil merit further study as potential repellents for the protection of humans and domestic animals from blood-feeding vectors and the diseases they transmit.  相似文献   

8.
9.
The toxicities of Mtx1 toxin against dipteran and lepidopteran species have been evaluated in this study. It was shown that Mtx1 has little or no toxicity to the tested lepidopteran species, but has moderate-level toxicity to Aedes albopictus Skuse (Diptera: Culicidae) and high-level toxicity to both susceptible and binary toxin-resistant Culex quinquefasciatus Say (Diptera: Culicidae). The LC(50) values of Mtx1 against a susceptible C. quinquefasciatus colony SLCq and two resistant colonies RLCq1/C3-41 and RLCq2/IAB59 selected in the laboratory with Bacillus sphaericus (Mayer & Neide) strains C3-41 and IAB59 respectively were 0.508, 0.854 and 0.675 mg L(-1) respectively. The data indicate that Mtx1 has a different mode of action from the binary toxin, and that it could be an alternative toxin to delay or overcome resistance development to binary toxin in C. quinquefasciatus.  相似文献   

10.
11.
12.
The toxicity of herbicides widely used in apple orchards to the two-spotted spider mite (Tetranychus urticae) was evaluated in laboratory and field studies. In a laboratory study with susceptible T. urticae, glufosinate-ammonium was highly effective against larvae, protonymphs and adults, but non-toxic to eggs. Its efficacy was much greater than that of the commonly used acaricide azocyclotin. The immatures died within 24 h after treatment, suggesting that the nymphicidal action may be attributable to a direct effect rather than an inhibitory action of chitin synthesis. Glufosinate-ammonium showed a positive temperature coefficient of toxicity against T. urticae adults at six temperatures from 10 to 32°C, being more toxic at higher temperatures. Very low levels of resistance to the herbicide were observed in the seven field-collected T. urticae populations resistant to various acaricides. Treatment with glufosinate-ammonium did not cause a repellent response from either adults or immature stages of T. urticae. Paraquat dichloride and glyphosate were ineffective against all stages of T. urticae. In a field study of a population of T. urticae, glufosinate-ammonium when sprayed to weeds caused significant decrease in T. urticae population densities in apple trees for nine weeks after treatment, as compared with the control. Thereafter, a single application of standard acaricides to apple foliage greatly reduced population densities, although there was no difference in the densities between the glufosinate-ammonium-treated and control plots. Based upon laboratory and field data, two single treatments with glufosinate-ammonium to weeds in May and a selective acaricide to apple trees in July may be used to prevent damage by T. urticae. ©1997 SCI  相似文献   

13.
BACKGROUND: Mosquitoes are the most important vectors of human pathogens. Wide‐scale use of pesticides has led to the development of resistance to most common insecticide groups. The need to develop novel products that have a low impact on human health and the environment is well established. The toxicity of selected semiochemicals with molecular structures indicative of insecticidal activity was determined against adult Aedes aegypti (L.) and Anopheles quadrimaculatus (Say). The two most active insecticides against Ae. aegypti were also evaluated against Ae. albopictus (Skuse). RESULTS: Fifteen semiochemicals classified as terpenoid alcohols, ketones or carboxylic esters showed toxicity to both mosquito species. Geranyl acetone (LC50 = 38.51 µg cm?2) followed by citronellol (LC50 = 48.55 µg cm?2) were the most toxic compounds to Ae. aegypti, while geraniol and lavonax, with LC50 values of 31.88 and 43.40 µg cm?2, showed the highest toxicity to An. quadrimaculatus. Both geranyl acetone and citronellol were highly toxic to Ae. albopioctus. No semiochemical showed fumigation activity against either species. All semiochemicals persisted for less than 24 h when tested on filter paper. CONCLUSION: Quantification of LC50 values of several semiochemicals against Ae. Aegypti, An. quadrimaculatus and Ae. albopioctus showed that semiochemicals not only modify insect behaviors but also hold potential as potent insecticides for mosquito control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The repellency of fennel (Foeniculum vulgare Miller)-containing products (5% aerosol and 8% cream) against mosquitoes was compared with those of citronella oil, geranium oil and deet, as well as three commercial repellents, Baby Keeper cream containing IR3535, MeiMei cream containing citronella and geranium oils, and Repellan S aerosol containing 19% N,N-diethyl-m-toluamide (deet) under laboratory and field conditions. In a laboratory study with female Aedes aegypti (L), fennel oil exhibited good repellency in a release-in-cage test and repellency in skin and patch tests of the oil was comparable with those of citronella and geranium oils. In paddy field tests with five human volunteers, 5% and 8% fennel oil-containing aerosol and cream produced 84% and 70% repellency, respectively, at 90 min after exposure, whereas Baby Keeper cream and MeiMei cream gave 71% and 57% repellency at 90 min after exposure, respectively, and Repellan S aerosol gave 89% repellency at 210 min. The species and ratio of mosquitoes collected were the genera Culex (44.1%), Anopheles (42.2%), Aedes (7.8%) and Armigeres (5.9%). Fennel oil-containing products could be useful for protection from humans and domestic animals from vector-borne diseases and nuisance caused by mosquitoes.  相似文献   

15.

BACKGROUND

The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F‐RDT] and Resistance Intensity Rapid Diagnostic Test [I‐RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C.

RESULTS

All populations under study were resistant to the pyrethroids: bifenthrin (99%), d‐(cistrans)‐phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F‐RDT, and showed moderate to high‐intensity resistance at 10× the diagnostic dose (DD) in I‐RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high‐intensity phenothrin resistance at 1× to 10× DD.

CONCLUSIONS

This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F‐RDT and I‐RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry
  相似文献   

16.
BACKGROUND: Emamectin benzoate is a novel macrocyclic lactone insecticide derived from naturally occurring avermectin molecules isolated by fermentation from the soil microorganism Streptomyces avermitilis Kim & Goodfellow. The present study aims to evaluate the toxicity of emamectin benzoate to codling moth, Cydia pomonella (L.), and oriental fruit moth, C. molesta (Busck), under laboratory and semi‐field conditions. RESULTS: Dose response bioassays showed that emamectin benzoate had a high level of intrinsic toxicity to early‐stage larvae of both species, and that contact activity might contribute significantly to mortality. In the semi‐field trials, residual toxicity lasted for more than 1 week. Ovicidal activity was recorded only for C. pomonella (approximately 30%), irrespective of the concentrations tested. Field trials confirmed the efficacy of emamectin benzoate on codling moth when applied at 7 day intervals. Fruit damage, both from the first and second generations, was comparable with that on treatment with chlorpyrifos‐ethyl, used as a chemical reference. CONCLUSION: Emamectin benzoate may be considered a valuable tool for the control of codling moth as a component of an IPM programme. Its collective advantages are: high efficacy, lack of cross‐resistance with currently used products, control of secondary pests such as oriental fruit moth and selective toxicity that spares beneficials. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
18.
BACKGROUND: The housefly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) are cosmopolitan pests of both farm and home environments. Houseflies have been shown to be resistant to a variety of insecticides, and new chemistries are slow to emerge on the market. Toxicities of selected semiochemicals with molecular structures indicative of insecticidal activity were determined against adults from an insecticide‐susceptible laboratory strain of houseflies. The three most active semiochemicals were also evaluated against recently colonized housefly and stable fly strains. RESULTS: Nineteen semiochemicals classified as aliphatic alcohols, terpenoids, ketones and carboxylic esters showed toxicity to houseflies and stable flies. Rosalva (LC50 = 25.98 µg cm?2) followed by geranyl acetone and citronellol (LC50 = 49.97 and 50.02 µg cm?2) were identified as the most toxic compounds to houseflies. Permethrin was up to 144‐fold more toxic than rosalva on the susceptible strain. However, it was only 35‐fold more toxic to the insecticide‐tolerant field strain. The compounds generated high toxicity to stable flies, with LC50 values ranging from 16.30 to 40.41 µg cm?2. CONCLUSION: Quantification of LC50 values of rosalva, citronellol and geranyl acetone against susceptible housefly and field‐collected housefly and stable fly strains showed that semiochemicals could serve as potent insecticides for fly control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
BACKGROUND: The effectiveness of chlorantraniliprole and other insecticides (bifenthrin, fipronil, indoxacarb, imidacloprid and chlorfenapyr) were tested against Coptotermes gestroi (Wasmann). Four experiments were conducted: a topical bioassay, a horizontal transfer study, an insecticide bioavailability test and a feeding bioassay. RESULTS: The topical bioassay showed that chlorantraniliprole was significantly less active to C. gestroi at 24 h post‐treatment compared with the other insecticides tested. Nevertheless, it is likely that a lesser amount of chlorantraniliprole was required to cause 50% mortality of C. gestroi at 7 and 14 days post‐treatment. The exposure duration and donor:recipient ratio affect the mortality of recipient termites. Mortality after exposure to chlorantraniliprole in sandy clay was significantly lower than in sand; however, by 14 days, > 90% of donor and recipient termites died in both substrates, irrespective of concentration. Fipronil and imidacloprid showed faster action, and high to moderate toxicity to C. gestroi. Termite workers also ceased to feed after exposure for 1 h to 50 mg kg?1 chlorantraniliprole‐treated sandy clay. CONCLUSION: Chlorantraniliprole demonstrated delayed toxicity at the lowest label rate (50 mg kg?1) in sandy clay. Its slow action will enable greater transfer of toxicant between nestmates, while feeding cessation will promote greater social interaction between healthy and exposed termites. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
本试验采用水蒸气蒸馏法提取飞机草?假蒟?紫穗槐和毛麝香4种植物的挥发油, 以气相色谱-质谱联用(GC-MS)分析挥发油的化学成分组成, 采用触杀和驱避活性测试评价以上植物挥发油对赤拟谷盗的生物活性?结果表明, 从上述植物挥发油中共鉴定出100种成分, 其中, 飞机草轻油和飞机草重油主要含有肉豆蔻醚(34.32%, 46.58%)和β-石竹烯(22.35%, 17.98%), 假蒟挥发油中主要含有β-胡椒烯(18.23%)和β-石竹烯(14.60%), 紫穗槐挥发油主要含有α-蒎烯(26.31%), 毛麝香挥发油主要含有γ-松油烯(24.90%)和环葑莰烯(16.59%)?此外, 飞机草轻油和重油?假蒟?紫穗槐和毛麝香挥发油对赤拟谷盗具有一定的触杀活性, 其24 h的LD50分别为58.83?62.73?51.94?44.08 μg/头和51.69 μg/头, 其中, 紫穗槐挥发油的触杀活性最强?同时, 上述植物挥发油对赤拟谷盗均具有一定的驱避活性, 其相对关联度ri分别为0.340 6?0.647 4?0.561 2?0.523 5和0.657 2, 其中, 毛麝香挥发油的驱避活性最强(ri =0.657 2)?因此, 紫穗槐和毛麝香挥发油在仓储害虫防治方面具有很好的研究价值和开发潜力?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号