共查询到18条相似文献,搜索用时 62 毫秒
1.
鉴于样本通常具有模糊特性且分布有稀疏的差别,在研究了现有的一些模糊支持向量机方法基础上,提出了基于模糊K近邻的模糊支持向量机方法。该方法首先针对每一类样本计算出样本均值,从而得到样本类中心点;然后计算出样本与中心点的距离,根据距离计算出样本的初始隶属度。计算每个样本的K个近邻点,按照模糊K近邻方法计算样本的隶属度,将初始隶属度和模糊K近邻隶属度以一定比例融合,得出样本的最终隶属度值。 相似文献
2.
本模糊支持向量分类机的构建特点是,训练点输出的类型和最终的模糊分类函数的函数值均为反映其模糊类别的实数。以模糊系数规划为基础,将模糊分类问题转化为求解模糊系数规划问题,求出模糊系数规划的γ-最优规划,据此给出模糊支持向量分类机(算法);用2个例子说明该算法的合理性;最后给出模糊支持向量分类机中最佳阈值的确定方法。 相似文献
3.
针对传统支持向量机对噪声点敏感问题,提出一种改进的支持向量机.其基本思想是根据样本对分类贡献不同赋予相应的隶属度,贡献大的分配较大的隶属度,贡献小的分配较小的隶属度.与传统支持向量机比较,减小了噪声点对分类的影响,提高了SVM的泛化能力.并将其应用到车型识别中,结果显示该方法的有效性. 相似文献
4.
介绍了支持向量机、信息向量机和相关向量机的理论与算法。利用最优化对偶理论,阐述了支持向量机的三种主要算法:硬间隔支持向量机、软间隔线性支持向量机和二次软间隔支持向量机的理论推导过程。对基于高斯过程模型,详细说明了信息向量机和相关向量机算法的实现过程。 相似文献
5.
6.
7.
针对路面结构特征,提出一种颜色与纹理特征相融合并结合模糊支持向量机的路面分类识别方法。提取路面图像的HSV颜色空间的颜色矩作为颜色特征,采用灰度共生矩阵法提取纹理特征,融合路面图像的颜色特征与纹理特征,采用模糊支持向量机进行支持向量特征训练,通过训练得到能尽可能多的满足每一种图像的样本数据特征的特征向量。通过实验,对比了采用传统的支持向量机与模糊支持向量机对路面分类识别的正确率。实验表明本研究所提出方法的有效性。 相似文献
8.
廖文婧 《西南大学学报(自然科学版)》2014,36(5)
该文提出一种基于边界支持向量的自适应增量支持向量机,对每轮训练的样本集提取其边界支持向量,从而减少训练向量数目,提高训练效率。通过自适应调整参数,可以更好地适应新增样本。采用 UCI(University of California Irvine)机器学习数据库和Statlog数据库对本文方法进行验证,实验结果表明本文方法的训练时间优于标准支持向量机和一般增量支持向量机。其分类精度也明显优于一般增量支持向量机,在训练数据较少时,其分类精度与标准支持向量机相差不大,但随着训练数据的增加,分类精度逐渐超越标准支持向量机。该文的方法更适合大规模数据集的增量学习。 相似文献
9.
10.
支持向量机在地下水水质评价中的应用 总被引:1,自引:0,他引:1
【目的】针对地下水水质评价中影响因素的模糊性和各因素与评价等级之间的不确定性等问题,采用支持向量机模型进行地下水水质评价研究,改进地下水水质评价方式。【方法】应用非线性支持向量机模型中的分类支持向量机,选用Gauss核函数,以羊毛湾灌区部分水井的水质资料为研究对象,进行地下水水质评价,并利用综合指数法和BP人工神经网络法对评价结果进行验证。【结果】羊毛湾灌区水质评价结果显示,该区地下水资源已被污染,需要进行保护性开发。3种方法的评价结果较为相似,但相较于综合指数法,支持向量机计算速度较快,易于通过计算机实现;相较于标准BP人工神经网络模型,支持向量机的评价精度较高,收敛速度较快,且所需参数较少。【结论】支持向量机能将复杂的非线性问题转化为线性问题,从而有效地避免过学习问题,并且拥有极大的泛化能力和对小样本问题的处理能力,可有效提高地下水水质评价精度,简化评价过程,为地下水水质评价提供了一条新思路。 相似文献
11.
基于BP神经网络和支持向量机的农用地分等方法研究 总被引:1,自引:0,他引:1
为建立农用地(耕地)质量评价模型,客观准确地进行农用地(耕地)分等,减少现行农用地分等方法中的人为因素影响,提高农用地分等的精度。以福建省长泰县丘陵山地区为实证研究区,通过无监督网络——自组织特征映射网络(SOM)筛选出2 602组典型样本,分别进行有监督网络——BP神经网络和支持向量机(SVM)的学习训练,将分等指标作为输入变量,以农用地自然质量等指数和等别作为输出变量,分别建立BP神经网络农用地分等模型与SVM农用地分等模型并对其精度进行分析。BP神经网络模型的评价正确率为89%,精度较高;支持向量机(SVM)模型的评价结果正确率为99%,达到高精度等级。2种模型均能满足农用地分等的精度要求,但SVM模型较BP神经网络效果更好,更适合应用于农用地分等工作。 相似文献
12.
Using an image segmentation and support vector machine method for identifying two locust species and instars 下载免费PDF全文
Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine(SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts. 相似文献
13.
本文分析总结了支持向量机从提出,兴起到现在的研究成果,并重点关注算法方面的进展.对各个方向的研究都做了相应分析.并适当编程实现了性能优越的序贯最小优化(SMO)算法.最后给出了针对各种应用问题,较为理想的算法选择. 相似文献
14.
任丕顺 《湖南农业大学学报(自然科学版)》2009,35(6)
为了解决实验数据的拟合问题,用支持向量回归机对实验数据进行回归拟合,给出了具体实现方法,并用典型的二次函数对响应面模型的回归精度进行了数值验证.针对树脂零件的成型工艺参数的优化设计问题,给出了支持向量回归机响应面模型的应用方法.实例证明了所提出方法的有效性和实用性. 相似文献
15.
【目的】将小波变换与支持向量机结合,构建小波支持向量机回归模型(WSVR),并用其对日径流进行预测,为水库调度提供参考依据。【方法】利用径流时间序列中包含的大量信息,通过小波变换将径流时间序列分解成不同分辨率水平的子序列和近似序列,通过相关性分析选取有效子序列与近似序列相加得到的新序列作为支持向量机回归模型的输入,建立小波支持向量机回归耦合模型,以泾河流域张家山站的日径流为研究对象,利用均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)、相关系数(R)及相对误差(RE)作为评价指标对模型预测精度进行评价。【结果】利用所建立的小波日径流支持向量机模型对张家山站日径流的预测结果显示,该模型在检验阶段的RMSE、MAE、DC、R及RE分别为26.05m3/s,8.26m3/s,0.826,0.910,-13.3%,与仅使用支持向量机回归模型(SVR)相比,耦合模型预测精度明显提高,且非汛期预测效果优于汛期。【结论】建立了小波支持向量机回归耦合模型,该模型可有效模拟和预测日径流,为日径流预测提供了新的途径。 相似文献
16.
针对林业资金投资变化的定量预测,提出一种基于改进支持向量机的预测方法.利用滑动时间窗口方法将历年林业资金投资数据构造成时间序列,将其做为数据样本集并由改进支持向量机加以训练以得到预测模型.通过某省近20年的林业资金投资数据实验验证了预测方法的有效性,实验结果表明:与传统预测方法相比,基于改进支持向量机的预测方法明显提高了投资变化预测精度. 相似文献
17.
提出了一种基于β因子历史样本淘汰机制的在线学习算法.对UCI标准数据集中的部分样本集的测试结果表明:该机制有效地淘汰了一些样本,在保持了分类精度和泛化能力的情况下,大大加快了增量学习的训练速度. 相似文献
18.
针对传统支持向量机方法中存在的野值噪声敏感问题,提出了一种基于紧密度的Grey-Sigmoid核函数支持向量机,不仅考虑样本与所属类中心之间的关系,还考虑了各个样本之间的距离。通过样本之间的紧密度来描述各个样本之间的关系,利用包围同一类样本的最小超球半径来衡量样本间的紧密度,样本灰度依据样本在球中的位置确定。通过对田间小麦全蚀病的遥感图像分类的实验验证,证明Grey-Sigmoid核函数和传统的Sigmoid核函数相比,计算速度更快,且精度没有明显损失。 相似文献