首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 )-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.  相似文献   

2.
Soil organic matter was extracted by a mixture of O.IM Na4P2O: O.IM NaOH from a chronosequence of weakly weathered soils developed on aeolian sand, and fractionated into humin (non-extractable), humic acid, and fulvic acid. The mass of total organic carbon in the profiles, the 14C content and the 13C/12C ratios were also determined. The weight of total carbon increased rapidly at first and then gradually without attaining a steady state. This trend was also shown by the humin and fulvic acid fractions, but the humic acid fraction appeared to have reached a maximum after about 3000 years. The order of total weights of the organic fractions was humin > fulvic acid > humic acid. The evidence suggests that the proportions of the humic fractions formed by decomposition are related to soil differences but not to vegetation. The greater part of the plant material found in the soils appears in the humin and fulvic acid fractions.  相似文献   

3.
Variations in the amount and composition of immobilized nitrogen (N) in major soil organic matter fractions were investigated in a 730-day soil incubation experiment using 15N-labeled urea and 15N nuclear magnetic resonance spectroscopy with the cross polarization/magic angle spinning (15N CPMAS NMR) method. After 730 days, 24.7% of the applied N was recovered from the soil as organic N. The urea-derived N recovered from humic acids and humin decreased from 11.2 and 33.8% of the applied amount after 14 days to 1.6 and 20.4% after 730 days, respectively. When these values were corrected for the microbial biomass (MB) N, they ranged from 9.0 to 1.2% and 28 to 18%, respectively. The proportion of urea-derived N recovered from fulvic acids was low, ranging between 0.4 and 5.8% (with MB N) or 5.6% (without MB N) of the applied amount, whereas that from water-soluble nonhumic substances (WS-NHS; NHS in the fulvic acid fraction) remained high, 28–33% of the applied amount after correction for the contribution of MB N up to day 365, and decreased to 0.9% thereafter. The 15N CPMAS NMR spectra of humic acids, fulvic acids, and humin showed the largest signal at −254 to −264 ppm, corresponding to peptide/amide N. The proportions of heterocyclic, peptide/amide, guanidine/aniline, and free amino N in the urea-derived humic acid N were 3–7, 83–90, 5–7, and 2–4%, respectively. More than 80% loss of the urea-derived humic acid N did not markedly alter their composition. No time-dependent variations were also observed for the proportions of respective N functional groups in humin N, which were 3–5, 71–78, 12–17, and 6–10% in the same order as above. These results suggest the greater importance of physical stability than structural variation for the initial accumulation of organic N in soil.  相似文献   

4.
Incorporation of newly-immobilized N into major soil organic matter fractions during a cropping period under paddy and upland cropping systems in the tropics was investigated in Jawa paddy fields with and without fish cultivation and a Sumatra cassava field in Indonesia. 15N-labelled urea (15N urea) was applied as basal fertilizer, and the soil samples were collected after harvest. The percentage of distribution of the residual N in soil from 15N urea into the humic acids, fulvic acid fraction, and humin were 13.1–13.9, 19.0–20.5, and 53.4–54.3%, respectively, for the Jawa paddy soils, and 14.9, 27.4, and 52.4%, respectively, for the Sumatra cassava soil. These values were comparable to the reported ones for other climatic zones. The percentage of distribution of 15N urea-derived N into humic acids was larger than that of total N into the same fraction in all the soils. The distribution into the fulvic acid fraction was also larger for 15N urea-derived N than for total N in the Jawa soils. Humic and non-humic substances in the fulvic acid fraction were separated using insoluble polyvinylpyrrolidone (PVP) into the adsorbed and non-adsorbed fractions, respectively. Less than 5% of the 15N urea-derived N in fulvic acid fraction was detected in the PVP-adsorbed fraction (generic fulvic acids). The proportion of non-hydrolyzable N remained after boiling with 6 M HCl in the 15N urea-derived N was 9.4–13.5%, 17.3–26.7%, and 8.4–16.6% for the humic acids, generic fulvic acids, and humin, respectively. The significantly low resistance to acid hydrolysis suggested that the 15N urea-derived N was less stable than the total N in soil regardless of the fractions of humus.  相似文献   

5.
减氮配施有机物质对土壤氮素淋失的调控作用   总被引:2,自引:1,他引:1  
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。  相似文献   

6.
水分状况与供氮水平对土壤可溶性氮素形态变化的影响   总被引:3,自引:0,他引:3  
采用通气培养试验,研究比较了两种水稻土在不同水分和供氮水平下的矿质氮(TMN)和可溶性有机氮(SON)的变化特征。结果表明,加氮处理及淹水培养均显著提高青紫泥的NH4+-N含量;除加氮处理淹水培养第7 d外,潮土NH4+-N含量并未因加氮处理或淹水培养而明显升高。无论加氮与否,控水处理显著提高两种土壤的NO3--N含量,其中潮土始见于培养第7 d,青紫泥则始于培养后21 d;加氮处理可显著提高淹水培养潮土NO3--N含量,却未能提高淹水培养青紫泥NO3--N含量。两种土壤的SON含量从开始培养即逐步升高,至培养21~35 d达高峰期,随后急剧下降并回落至基础土样的水平;SON含量高峰期,潮土SON/TSN最高达80%以上,青紫泥也达60%。综上所述,潮土不仅在控水条件下具有很强硝化作用,在淹水条件下的硝化作用也不容忽视,因此氮肥在潮土中以硝态氮的形式流失的风险比青紫泥更值得关注;在SON含量高峰期,两种土壤的可溶性有机氮的流失风险也应予以重视。  相似文献   

7.
Management of N fertilization depends not only on the mineral N measured at the beginning of the growing season but also on the status of the low-molecular-weight organic-N fraction. Our study was conducted to analyze how much of the 15N applied in labeled cornshoot tissue would be recovered in 0.01 M CaCl2-extractable 15N fractions and wheter a decrease in the CaCl2-extractable 15N fraction quantitatively followed the trend in net mineralization of the 15N applied in corn-shoot tissue during an incubation period. The effects of adding 15N-labeled young corn-shoot tissue to a sandy soil and a clay soil were investigated for 46 days in an aerobic incubation experiment at 25°C. The application of 80 mg N kg-1 soil in the form of labeled corn-shoot tissue (24.62 mg 15N kg-1 soil) resulted in a significant initial increase, followed by a decrease the labeled organic-N fraction in comparison with the untreated soils during the incubation. The labeled organic-N fraction was significantly higher in the sandy soil than in the clay soil until the 4th day of incubation. The decrease in labeled organic N in the sandy soil resulted in a subsequent increase in 15NO inf3 sup- during the incubation. Ammonification of applied plant N resulted in a significant increase in the 1 M HCl-extractable non-exchangeable 15NH inf4 sup+ fraction in the clay soik, owing to the vermiculite content. The 15N recovery was analyzed by the 0.01 M CaCl2 extraction method; at the beginning of the incubation experiment, recovery was 37.0% in the sandy soil and 36.7% in the clay soil. After 46 days of incubation, recovery increased to 47.2 and 43.8% in the sandy and clay soils, respectively. Net mineralization of the 15N applied in corn-shoot tissue determined after the 46-day incubation was 6.60 mg 15N kg-1 soil (=34.9% of the applied organic 15N) and 4.37 mg 15N kg-1 soil (=23.1% of the applied organic 15N) in the sandy and the clay soils, respectively. The decrease in the labeled organic-N fraction extracted by 0.01 M CaCl2 over the whole incubation period was 3.14 and 2.33 mg 15N kg-1 soil in the sandy and clay soil, respectively. These results indicate that net mineralization of 15N was not consistent with the decrease in the labeled organic-N fraction. This may have been due to the inability of 0.01 M CaCl2 to extract or desorb all of the applied organic 15N that was mineralized during the incubation period.  相似文献   

8.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils.  相似文献   

9.
Forty-two-day-old wheat (Triticum aestivum L. var. Asakazekomugi) plants were treated with complete, K-free (—K), Ca-limited (—Ca), and Mg-free (—Mg) nutrient solutions for 10 days using 2 mM NH4NO3 as the nitrogen source, which was replaced with 4 mM 15 NH4C1 or Na15NO3 for the subsequent 2 days to investigate the absorption, translocation, and assimilation of inorganic nitrogen in relation to the mineral supply. In another experiment plants were grown on NO3 ?, NH4 +, NH4N03, and K-free and Ca-limited NH4N03 nutrient solutions for 10 days, and then in the latter three treatments the nitrogen source was replaced with NO3 ? and half of the —K plants received K for 6 days to examine the changes in the nitrate reductase activity (NRA).

Wheat plants absorbed NH4 ?N and NO3-N at a similar rate. Influence of K on the absorption of N03-N was stronger than that on the absorption of NH4-N in wheat plants. The supply of K to the —K plants increased the absorption of NO3-N, while the absorption of NH4-N still remained at a lower rate in spite of the addition of K. A limited supply of Ca and lack of Mg in nutrient media slightly affected the absorption of NH4-N. The influence of K was stronger on the translocation of nitrogen from roots to shoots, while Ca and Mg had little effect. When K was supplied again to the —K plants the translocation of NO3,-N was more accelerated than that of NH4-N. Incorporation of NH4-N into protein was higher than that of NO3-N in all the tissues; root, stem, and leaf. Assimilation of NH4-N and NO3-N decreased by the —K and —Mg treatments.

Leaf NRA of wheat plants decreased in the —K and —Ca plants. Higher leaf NRA was found when K was given again to the —K plants than when the plants were continuously grown in K-free media. Replacement of NO3 ? with NH4 + as the nitrogen source caused a decline of leaf NRA, while the supply of both NH4 ?N and NO3-N slightly affected the leaf NRA.  相似文献   

10.
Samples described in the previous paper were analyzed for humus composition by the method of Kumada el al,, elementary composition of humic acids, nitrogen distribution among humic acid, fulvic acid, and humin, and organic matter composition by the modified Waksman method. The samples obtained by physical fractionation from each horizon of Higashiyama soil were as follows: f1 and f2 from the L layer, f1, f2 and f3 from the F layer, f1 f2, sand, silt, and clay fractions from the H-A and A horizons.

With the progress of decomposition, the following tendencies were rather clearly observed.

The extraction ratio of soluble humus, amounts of humic acid and fulvic acid, and PQ, value tended to increase with some exceptions. The degree of humification of humic acid proceeded. Most humic acids belonged to the Rp type, but those of the clay fractions belonged to the B type.

As for the elementary composition of humic acid, transitional changes from the Lf1 to the clay fraction of the A horizon were observed. But differences in elementary composition among humic acids were far less, compared with those among whole fractions.

Nitrogen contents in humic, fulvic, and humin fractions increased with the progress of decomposition and humiliation, and the largest relative increase was found in fulvic acid nitrogen.

According to the modified Waksman's method, the amounts of residues and protein increased, while the total amounts of each extract, except for the HCl extract, and the amounts of sugars and starch, phenolic substances, hemicelluloses and pectin, and cellulose decreased. Sugars and starch comprised only a small portion of the hot water extract, and polyphenols substances comparable to sugars and starch were also found in the extract. Hemicelluloses and pectin accounted for only about one-half of the HCl extract. Several characteristic differences in the elementary composition of extracts and residues were found.

Pheopigments existed in benzene-ethanol extracts and their amounts seemed to decrease from Lf1 to Ff2.  相似文献   

11.
X-ray photoelectron spectroscopy(XPS) was applied to examine the N structures of soil humic substances and some of their analogues.It was found that for soil humic substances XPS method gave similar results as those obtained by ^15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method.70%-86% of total N in soil humic substances was in the form of amide,and 6%-13% was presented as ammes,with the remaining part as heterocyclic N.There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones.For fulvic acid from weathered coal and benzoquinone-(NH4)2SO4 polymer the XPS results deviated significantly from the ^15N CPMAS NMR data.  相似文献   

12.
Abstract

Release of native and added K+ and NH+ 4 from two soils was monitored during a 166 day incubation/leaching experiment. One soil (Brookston) represented a major soil series In Ontario whereas the other (Harriston) was suspected having a relatively large fixation capacity. Treatments were imposed involving addition of 50 μM g‐1 soil of K+(KCl) or NH+ 4 (NH4Cl) only or one added after the other on successive days. The addition of either K+ or NH+ 4 on day 2 tended to inhibit the release of the other added on day I. Also the addition of either K+ or NH+ 4 on day 1 tended to inhibit the sorption or fixation of the other on day 2. The release rate of K+ during the 10 to 166 day period was almost constant and not affected by the addition of NH+ 4. Alternatively, the addition of K+ on day 2 slowed the release rate of NH+ 4 measured by NO? 3 appearance from day 10 to 40 but had no effect thereafter. At the end of the experiment considerably more K+ than NH+ 4 was retained suggesting that K+ was more firmly fixed. However, the continuing nitrification of NH+ 4 must be contrasted with periodic removal of K+ by leaching with 0.01 M CaCl2 solution since the equilibrium between exchangeable and fixed ions was affected. There were no notable differences between the two soils inspite of a considerable difference in clay content.  相似文献   

13.
《Geoderma》2006,130(1-2):124-140
Chemically and physically fractionated samples extracted from the surface horizon of a soil developed under a mix of coniferous and deciduous vegetation in southwestern Colorado were studied. 13C NMR data on this soil's organic matter and its HF(aq)-washed residue, as well as the classic acid/base-separated humic fractions (humic acid, fulvic acid, humin), were examined for chemical–structural detail, e.g., the various structural functionalities present (especially lipids, carbohydrates, aromatics, polypeptides and carbonyl/carboxyls). Among the humic fractions, it was found that the lipid concentrations are in the order humic acid>fulvic acid= humin; for carbohydrates the order is fulvic acid>humin>humic acid; for aromatic carbons the order is humic acid>humin>fulvic acid; for polypeptides it is humic acid>fulvic acid>humin and for carbonyl/carboxyl species it is humin>humic acid>fulvic acid, but the differences are small. 13C spin–lattice relaxation times indicate that at least two types of “domains” exist in each, corresponding to “higher” and “lower” concentrations of paramagnetic centers, e.g., Fe3+.  相似文献   

14.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

15.
硝化反应是土壤、特别是干旱半干旱地区农业土壤N2O产生的重要途径之一。但是,目前环境条件对硝化反应中N2O排放的影响研究较少,而在国内外通用的几个模型中均用固定比例估算硝化反应过程中N2O的排放。本文通过砂壤土培养试验,研究了土壤温度、水分和NH4+-N浓度对硝化反应速度及硝化反应中N2O排放的影响,并用数学模型定量表示了各因素对硝化反应的作用,用最小二乘法最优拟合求得该土壤的最大硝化反应速度及N2O最大排放比例。结果表明,随着温度升高,硝化反应速度呈指数增长;水分含量由20%充水孔隙度(WFPS)增加到40%WFPS时,反应速度增加,水分含量增加到60%WFPS时反应速度略有降低;NH4+-N浓度增加对硝化反应速度起抑制作用。用米氏方程描述该土壤的硝化反应过程,其最大硝化反应速度为6.67mg·kg?1·d?1。硝化反应中N2O排放比例随温度升高而降低;随NH4+-N浓度增加而略有增加;20%和40%WFPS水分含量时,硝化反应中N2O排放比例为0.43%~1.50%,最小二乘法求得的最大比例为3.03%,60%WFPS时可能由于反硝化作用,N2O排放比例急剧增加,还需进一步研究水分对硝化反应中N2O排放的影响。  相似文献   

16.
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base‐urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO‐acid) for the humin‐enriched clay separates. The extracts from base‐urea and DMSO‐acid would be regarded as ‘humin’ in the classical definitions. The fractions isolated from aqueous base, base‐urea and DMSO‐acid were characterized by solid and solution state NMR spectroscopy. The base‐urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base‐urea and DMSO‐acid solvents isolated ca. 93% of total organic carbon from the humin‐enriched fine clay fraction (<2 μm). Characterization of the humic fractions by solid‐state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base‐urea extract. Lignin‐derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char‐derived structures were contained in the fulvic acids and fulvic acids‐like material isolated from the base‐urea solvent. After extraction with base‐urea, the 0.5 m NaOH extract from the humin‐enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution‐state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO‐acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long‐chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids‐like material isolated in the base‐urea medium, indicating that urea can liberate char‐derived material hydrogen bonded or trapped within the humin matrix.  相似文献   

17.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

18.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

19.
LAN Ting  HAN Yong  CAI Zu-Cong 《土壤圈》2017,27(1):112-120
Although to date individual gross N transformations could be quantified by ~(15)N tracing method and models,studies are still limited in paddy soil.An incubation experiment was conducted using topsoil(0-20 cm) and subsoil(20-60 cm) of two paddy soils,alkaline and clay(AC) soil and neutral and silt loam(NSL) soil,to investigate gross N transformation rates.Soil samples were labeled with either ~(15)NH4_NO_3 or NH_4~(15)NO_3,and then incubated at 25 °C for 168 h at 60%water-holding capacity.The gross N mineralization(recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil,and the gross N nitrification(autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil.Although gross NO_3~- consumption(i.e.,NO_3~- immobilization and dissimilatory NO_3~- reduction to NH_4~+ rates increased with increasing gross nitrification rates,the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil.These showed that high NO_3~- production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO_3~- can increase the risk of NO_3~- loss through leaching and denitrification.  相似文献   

20.
A laboratory-based aerobic incubation was conducted to investigate nitrogen(N) isotopic fractionation related to nitrification in five agricultural soils after application of ammonium sulfate((NH4)2SO4). The soil samples were collected from a subtropical barren land soil derived from granite(RGB),three subtropical upland soils derived from granite(RQU),Quaternary red earth(RGU),Quaternary Xiashu loess(YQU) and a temperate upland soil generated from alluvial deposit(FAU). The five soils varied in nitrification potential,being in the order of FAU YQU RGU RQU RGB. Significant N isotopic fractionation accompanied nitrification of NH+4. δ15N values of NH+4 increased with enhanced nitrification over time in the four upland soils with NH+4 addition,while those of NO-3 decreased consistently to the minimum and thereafter increased. δ15N values of NH+4 showed a significantly negative linear relationship with NH+4-N concentration,but a positive linear relationship with NO-3-N concentration. The apparent isotopic fractionation factor calculated based on the loss of NH+4 was 1.036 for RQU,1.022 for RGU,1.016 for YQU,and 1.020 for FAU,respectively. Zero- and first-order reaction kinetics seemed to have their limitations in describing the nitrification process affected by NH+4 input in the studied soils. In contrast,N kinetic isotope fractionation was closely related to the nitrifying activity,and might serve as an alternative tool for estimating the nitrification capacity of agricultural soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号