首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium caseinate (CC) and whey protein isolate (WPI) films were prepared to contain 5 or 10% Gluconal Cal (GC), a mixture of calcium lactate and gluconate, or 0.1 or 0.2% alpha-tocopheryl acetate (VE), respectively. The pH and viscosity of film-forming solutions and the water vapor permeability and tensile property of the films were determined using standard procedures. CC and WPI films have the capabilities to carry high concentration of GC or VE, but some of the film functionality might be compromised. Adding VE to CC and WPI films increased film elongation at break, whereas incorporating 0.2% VE decreased WVP of CC films and tensile strength of both CC and WPI films. Incorporation of GC reduced the tensile strength of CC films (P < 0.05), with 10% GC decreasing both elongation at break and WVP (P < 0.05). These types of films may be used for wrapping or coating to enhance the nutritional value of foods. The concentration of GC and VE added to the films must be carefully selected to meet required water barrier and mechanical properties of the films depending on their specific applications.  相似文献   

2.
Gliadins and glutenins were extracted from commercial wheat gluten on the basis of their extractability in ethanol and used to produce film-forming solutions. Films cast using these gliadin- and glutenin-rich solutions were characterized. Glycerol was used as a plasticizer, and its effect on the films was also studied. Films obtained from the glutenin fraction presented higher tensile strength values and lower elongation at break and water vapor permeability values than gliadin films. Gliadin films disintegrated when immersed in water. The GAB isotherm model was used to describe the equilibrium moisture sorption of the films. The glycerol concentration largely modified mechanical and water vapor barrier properties of both film types.  相似文献   

3.
The strength of films extruded from powder blends of corn zein or corn gluten meal (CGM) with low‐density polyethylene was investigated. Tensile strength, percent elongation at break, and elastic modulus of the extruded films were measured. The tensile strength decreased from 13 MPa to ≈10.5 MPa with zein addition, while CGM addition resulted in tensile strength of ≈6 MPa. The higher the level of biological material (CGM or zein) in the films the lower the tensile properties. Films containing CGM exhibited significantly lower tensile properties than those containing zein. Extrusion processing of biological films is a step toward commercial viability.  相似文献   

4.
This study focuses on the effect exerted by interchain disulfide bonds on the functional properties of films made from gliadins when cross-linked with cysteine. Gliadins were extracted from commercial wheat gluten with 70% aqueous ethanol, and cysteine was added to the film-forming solution to promote cross-linking between protein chains. The formation of interchain disulfide bonds was assessed by SDS-PAGE analysis. Gliadin films treated with cysteine maintain their integrity in water and become less extensible while their tensile strength increases as a consequence of the development of a more rigid network. The glass transition temperature of cross-linked films shifts to slightly higher values. The plasticizing effects of glycerol and moisture are also demonstrated. The mechanical behavior of cysteine-cross-linked gliadin films was compared to that of polymeric glutenins. Cross-linked gliadins displayed tensile strength values similar to those of glutenin films but achieved slightly lower elongation values. Cysteine-cross-linked gliadin films present the advantage that they are ethanol soluble, facilitating film fabrication or their application as a coating for food or for any other film or surface.  相似文献   

5.
Chemical (vapors of formaldehyde), physical (temperature, UV and gamma radiation), and aging treatments were applied to wheat gluten films. Changes in film mechanical properties, water vapor permeability, solubility, and color coordinates were investigated. An aging of 360 h led to a 75 and 314% increase in tensile strength and Young's modulus, respectively, and a 36% decrease in elongation. Severe thermal (above 110 degrees C, 15 min) and formaldehyde treatments highly improved the mechanical resistance of the films. Under these conditions, up to 376 and 654% increase in tensile strength and Young's modulus and up to 66% decrease in elongation have been observed. Water solubility was only slightly modified, whereas water vapor permeability was not affected. Color coordinates of films heated above 95 degrees C changed to a great extent. An almost total insolubilization of proteins in sodium dodecyl sulfate occurred for heat- and formaldehyde-treated films, due to the modification of protein network leading to changes in properties of the films.  相似文献   

6.
徐慧  陈野 《农业工程学报》2015,31(8):272-276
传统浇铸法制备的玉米醇溶蛋白薄膜表面粗糙,机械性质及耐水性较差。为了改善玉米醇溶蛋白理化性质,在传统浇铸法膜制备过程中引入平行匀强电场(1~5 A/m2)处理蛋白成膜液。经过电场处理后,玉米醇溶蛋白表面光滑、形状完整。试验结果表明:电场处理可改善薄膜力学性质、表面疏水性、水蒸气透过率等性质;随着电流密度的增大,薄膜拉伸强度、断裂伸长率、水蒸气透过率、吸水率以及表面接触角呈现规律性增加或者减小;电场处理下薄膜热特性改变,与未处理组相比变性温度略有提高,最大增幅为19.5℃。当电流密度为4 A/m2时,薄膜理化性质较佳:拉伸强度、断裂伸长率分别为73.09 MPa和9.68%,吸水率降低至14.87%,水蒸气透过率为2.55×10-8 g·m/(m2·h·Pa),静态接触角为62.18°,变性温度提高到118.39℃,热稳定性提高,薄膜表面光滑。电场可诱导成膜液中分子有序性排列,提高薄膜均一性;通过调节电流密度可得到具有一定力学强度和亲/疏水性的薄膜。试验结果为制备具有特定功能性的纯玉米醇溶蛋白薄膜材料提供了理论依据。  相似文献   

7.
The mechanical and physical properties of glycerol-plasticized wheat gluten films dried at different temperatures (20, 50, and 80 degrees C) and relative humidities (35 and 70% RH) were investigated. Dispersion of wheat gluten was prepared at pH 11 in aqueous solution. Films were obtained by casting the wheat gluten suspension, followed by solvent evaporation in a temperature and relative humidity controlled chamber. Decreasing relative humidity altered most of the mechanical properties. At 35% RH, tensile strength increased when drying temperature increased. However, at 70% RH, tensile strength decreased when temperature increased. Thickness of the films decreased by increasing temperature. Hypothetical coating strength increased with increasing drying temperature at 35% RH. However, at 70% RH, a maximum value was observed at 50 degrees C. Films produced at 80 degrees C exhibited low solubility in aqueous solution. Addition of 1.5% (w/v) sodium dodecyl sulfate increased solubility of all of the films except the film dried at 50 degrees C and 70% RH. Overall, drying temperature and relative humidity affected mechanical and physical properties of the wheat gluten films. However, the effect of drying temperature was more pronounced than the effect of relative humidity.  相似文献   

8.
Methylcellulose (MC)-based films were prepared by solution casting from its 1% aqueous suspension containing 0.25% glycerol. Trimethylolpropane trimethacrylate (TMPTMA) monomer (0.1-2% by wt) along with the glycerol was added to the MC suspension. The films were cast and irradiated from a radiation dose varied from 0.1 to 10 kGy. Then the mechanical properties such as tensile strength (TS), tensile modulus (TM), and elongation at break (Eb) and barrier properties of the films were evaluated. The highest TS (47.88 PMa) and TM (1791.50 MPa) of the films were found by using 0.1% monomer at 5 kGy dose. The lowest water vapor permeability (WVP) of the films was found to be 5.57 g·mm/m(2)·day·kPa (at 0.1% monomer and 5 kGy dose), which is 12.14% lower than control MC-based films. Molecular interactions due to incorporation of TMPTMA were supported by FTIR spectroscopy. A band at 1720 cm(-1) was observed due to the addition of TMPTMA in MC-based films, which indicated the typical (C═O) carbonyl stretching. For the further improvement of the mechanical and barrier properties of the film, 0.025-1% nanocrystalline cellulose (NCC) was added to the MC-based suspension containing 1% TMPTMA. Addition of NCC led to a significant improvement in the mechanical and barrier properties. The novelty of this investigation was to graft insoluble monomer using γ radiation with MC-based films and use of biodegradable NCC as the reinforcing agent.  相似文献   

9.
天然花青素提取物与壳聚糖明胶复合膜的制备和表征   总被引:2,自引:1,他引:2  
为了开发天然的抗氧化活性包装材料,以紫甘蓝、黑米、玫瑰、蓝莓为原料制备天然花青素提取物与壳聚糖明胶的复合膜,比较分析了不同天然花青素提取物对复合膜的物理、机械、抗氧化活性及形貌结构的影响。结果表明:天然花青素提取物的加入,增加了膜的厚度,显著(P<0.05)影响膜的含水率、水溶性及外观形貌。壳聚糖明胶复合膜的水蒸汽透过率(water vapor permeability,WVP)为10.69×10-11 g/(m·s·Pa)。玫瑰花青素提取物的加入使得WVP值降低,而其他花青素提取物的加入使得WVP值增大。玫瑰复合膜的拉伸强度最大,达到27.03 MPa,断裂伸长率最小,黑米花青素提取物可增加复合膜的延展性,断裂伸长率最大为57.67%。傅里叶红外光谱表明天然花青素提取物的羟基基团与壳聚糖的氨基基团产生相互作用。扫描电镜结果表明花青素提取物影响微观结构,而且生物相容性较好。加入天然花青素提取物后,复合膜抗氧化活性均显著(P<0.05)提高,且玫瑰复合膜有着较高的抗氧化活性,1,1-二苯基-2-苦基肼(DPPH)自由基清除能力达到95.47%。结果表明:玫瑰花青素提取物更有利于开发阻湿性能好,水溶性低,抗拉伸和抗氧化活性高的包装材料,具有良好的应用前景。  相似文献   

10.
Cinnamaldehyde is a naturally occurring α,β-unsaturated aldehyde. Its potential as a natural cross-linker to improve the physical performance of cast wheat gliadin films was evaluated. The cross-linking reaction was found to be dependent on the pH of the reaction medium, with pH 2 as the optimum. The water resistance (weight loss after immersion), mechanical properties (Young's modulus, tensile strength and elongation at break), thermal properties (T(g) and decomposition behavior), optical properties and morphology of films were evaluated. Cross-linked films showed high transparency, maintained their integrity after immersion, and displayed significant improvements in tensile strength and Young's modulus without impairment of their elongation properties. These effects, which were proportional to the amount of cinnamaldehyde added, highlight the possible formation of intermolecular covalent bonds between "monomeric" gliadins, leading to a polymerized network. Thus, this treatment could provide a new alternative to the toxic cross-linkers commonly employed and so extend the use of gliadin films.  相似文献   

11.
The secondary structures of wheat gliadins (a major storage protein fraction from gluten) in film-forming solutions and their evolution during film formation were investigated by Fourier transform infrared spectroscopy. In the film-forming solution, wheat gliadins presented a mixture of different secondary structures, with an important contribution of beta-turns induced by proline residues. The presence of plasticizer did not have any influence on protein secondary structure in the film-forming solution. The evolution of protein conformation was followed during drying; the major feature of this evolution was a clear growing of the infrared band at 1622 cm(-1), characteristic of intermolecular hydrogen-bonded beta-sheets. This revealed the formation of protein aggregates during film drying. The influence of the drying temperature on film properties and gliadin secondary structures was also investigated. Higher drying temperatures induced an increase of both the tensile strength of the films and the amount of beta-sheets aggregates. Although the appearance of heat-induced disulfide bridge cross-links has already been described, there is clear evidence that hydrogen-bonded beta-sheets aggregates are also induced by thermal treatment. It was not possible, however, to determine whether there is a direct relationship between the occurrence of these aggregates and the increase of the tensile strength of the films.  相似文献   

12.
Improvement in the water stability and other related functional properties of thin (<50 μm) kafirin protein films was investigated. Thin conventional kafirin films and kafirin microparticle films were prepared by casting in acetic acid solution. Thin kafirin films cast from microparticles were more stable in water than conventional cast kafirin films. Treatment of kafirin microparticles with heat and transglutaminase resulted in slightly thicker films with reduced tensile strength. In contrast, glutaraldehyde treatment resulted in up to a 43% increase in film tensile strength. The films prepared from microparticles treated with glutaraldehyde were quite stable in ambient temperature water, despite the loss of plasticizer. This was probably due to the formation of covalent cross-linking between free amino groups of the kafirin polypeptides and carbonyl groups of the aldehyde. Thus, such thin glutaraldehyde-treated kafirin microparticle films appear to have good potential for use as biomaterials in aqueous applications.  相似文献   

13.
The properties of new and aged glycerol-plasticized vital wheat gluten films containing < or =4.5 wt % natural or quaternary ammonium salt modified montmorillonite clay were investigated. The films were cast from pH 4 or pH 11 ethanol/water solutions. The films, aged for < or =120 days, were characterized by tensile testing, X-ray diffraction, and transmission electron microscopy. In addition, water vapor permeability (11% relative humidity) and the content of volatile components were measured. The large reduction in the water vapor permeability with respect to the pristine polymer suggests that the clay platelets were evenly distributed within the films and oriented preferably with the platelet long axis parallel to the film surface. The film prepared from pH 11 solution containing natural clay was, as revealed by transmission electron microscopy and X-ray diffraction, almost completely exfoliated. This film was consequently also the strongest, the stiffest, and the most brittle and, together with the pH 11 film containing modified clay, it also showed the greatest decrease in water vapor permeability. The large blocking effect of the clay had no effect on the aging kinetics of the films. During aging, the pH 4 and pH 11 film strength and the pH 4 film stiffness increased and the pH 4 film ductility decreased at the same rate with or without clay. This suggests that the aging was not diffusion rate limited, that is, that the loss of volatile components or the migration of glycerol or glycerol/wheat gluten phase separation was not limited by diffusion kinetics. The aging rate seemed to be determined by slow structural changes, possibly involving protein denaturation and aggregation processes.  相似文献   

14.
A new class of zein additives was investigated, thiocyanate salts. Ammonium, potassium, guanidine (GTC), and magnesium thiocyanate salts were added to solutions of zein in with various amounts of tri(ethylene glycol) (TEG), cast as films, and then tested to determine the impact that each salt had on properties. The presence of these salts affected solution rheology and intrinsic viscosity, demonstrating that the salts interacted with the protein. It was found that these salts acted as plasticizers, as they lowered the glass transition temperature of zein when evaluated with differential scanning calorimetry. In zein films in which TEG was present, these salts increased elongation and reduced tensile strength. However, unlike traditional plasticizers (such as TEG), when the salts were used as the only additive, elongation was not increased and tensile strength was not decreased. Of the salts tested, GTC in combination with TEG was found to increase elongation the most. The impact of salts on elongation was greatly affected by the relative humidity in which the samples were stored.  相似文献   

15.
The influence of a set of hydrophilic plasticizers varying in their chain length (ethyleneglycol and longer molecules) on the tensile strength and elongation at break of cast gluten films was studied. When considered on a molar basis (moles of plasticizer per mole of amino acid), the effect of the different plasticizers depended on their respective molecular weights for plasticizer/amino acid ratios in the range from 0.10 to 0.40. However, above a ratio of 0.40-0.50 mol/mol of amino acid, these differences were abolished and both stress and strain reached a plateau value, with all plasticizers studied. In fact, when a homologous series of molecules was considered, the ability for plasticizer to decrease stress and increase strain was closely related to the number of hydrogen bonds the molecule was able to share with the protein network. Ethyleneglycol's efficiency was, however, lower than expected from its hydrogen-bonding potential; a comparison with other diols demonstrated that this was due to the small size of this molecule. The particular effect of glycerol concentration on the films' mechanical properties suggested that other molecular features of the plasticizer, such as the number and position of hydroxide groups in the molecule, were involved in the plasticization mechanism.  相似文献   

16.
为考察壳聚糖对鱿鱼皮明胶膜的改性效果,将壳聚糖添加到明胶溶液中,考察壳聚糖的添加量对鱿鱼皮明胶复合膜机械性能、水蒸气透过率、透光性及其结构的影响。结果表明,壳聚糖能有效改善鱿鱼皮明胶膜的有关性能指标,当鱿鱼皮明胶溶液与壳聚糖溶液以60∶40(v/v)比例混合,制得复合膜的断裂伸长率相比单一明胶膜下降,但其抗拉伸强度、透光率和水蒸气阻隔能力分别比单一明胶膜提高了652%、11%和48%;差示扫描量热仪、红外及扫描电镜分析结果显示,壳聚糖能与鱿鱼皮明胶相互作用,形成结构致密的均相体系,提高复合膜的热变性温度。综上可知,鱿鱼皮明胶与壳聚糖之间具有良好的相容性,壳聚糖是一种较理想的明胶膜改性材料。本试验结果为鱿鱼皮明胶作为食品保鲜膜的应用提了供依据。  相似文献   

17.
Desorption behavior of sorbed flavor compounds such as ethyl esters, n-aldehydes, and n-alcohols from LDPE and PET films was investigated in 0 to 100% (v/v) ethanol solutions at 20 degrees C, 50 degrees C, and 60 degrees C. In both films, the desorption apparently increased with increasing ethanol concentration and treatment temperature, depending on the compatibility of the flavor compound with the solvent. Namely, the partition coefficient of ethyl esters, n-aldehydes, and n-alcohols in the LDPE film turned out to be approximately zero at >/=60%, >/=80%, and >/=40% (v/v) ethanol, respectively (for PET film, >/=80%, >/=80%, and >/=40% (v/v) ethanol concentrations were required for complete desorption, respectively). As for physical properties (heat of fusion, melting point, and tensile strength and elongation at break) of LDPE and PET films, there were no significant differences between intact film and the treated film with 60% (v/v) ethanol for 30 min at 60 degrees C. These results suggest that it is possible to apply a desorption solvent such as ethanol solution for desorption of sorbed flavor compounds from packaging films with no physical change in the film properties by this desorption treatment.  相似文献   

18.
Lipid particle size effects on water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI)/beeswax (BW) emulsion films were investigated. Emulsion films containing 20 and 60% BW (dry basis) and mean lipid particle sizes ranging from 0.5 to 2.0 microm were prepared. BW particle size effects on WVP and mechanical properties were observed only in films containing 60% BW. WVP of these films decreased as lipid particle size decreased. As drying temperature increased, film WVPs decreased significantly. Meanwhile, tensile strength and elongation increased as BW particle size decreased. However, for 20% BW emulsion films, properties were not affected by lipid particle size. Results suggest that increased protein-lipid interactions at the BW particle interfaces, as particle size decreased and resulting interfacial area increased, result in stronger films with lower WVPs. Observing this effect depends on a large lipid content within the protein matrix. At low lipid content, the effect of interactions at the protein-lipid interfaces is not observed, due to the presence of large protein-matrix regions of the film without lipid, which are not influenced by protein-lipid interactions.  相似文献   

19.
The purpose of this study was to evaluate the characteristics of a chitosan film cross-linked by a naturally occurring compound, aglycone geniposidic acid (aGSA). This newly developed aGSA-cross-linked chitosan film may be used as an edible film. The chitosan film without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan film were used as controls. The characteristics of test chitosan films evaluated were their degree of cross-linking, swelling ratio, mechanical properties, water vapor permeability, antimicrobial capability, cytotoxicity, and enzymatic degradability. It was found that cross-linking of chitosan films by aGSA (at a concentration up to 0.8 mM) significantly increased its ultimate tensile strength but reduced its strain at fracture and swelling ratio. There was no significant difference in the antimicrobial capability between the cross-linked chitosan films and their fresh counterpart. However, the aGSA-cross-linked chitosan film had a lower cytotoxicity, a slower degradation rate, and a relatively lower water vapor permeability as compared to the glutaraldehyde-cross-linked film. These results suggested that the aGSA-cross-linked chitosan film may be a promising material as an edible film.  相似文献   

20.
酸溶剂对葛根淀粉/壳聚糖复合可食膜性能的影响   总被引:5,自引:4,他引:1  
钟宇  李云飞 《农业工程学报》2012,28(13):263-268
为了考察壳聚糖酸溶剂对葛根淀粉/壳聚糖复合可食膜抗菌、物理和机械性能的影响,该文选择质量分数为1%的乙酸、乳酸、苹果酸为溶剂,配制质量体积比2g/L的葛根淀粉-壳聚糖复合膜液,以0.5g/L的抗坏血酸为活性添加剂,0.6g/L的丙三醇为增塑剂,0.1g/L的吐温20为表面活性剂,采用流延法制备可食性复合膜。结果表明:复合膜液具有一定的表面活性;酸溶剂未对膜液表面张力产生显著影响。有机酸溶剂种类对复合膜性能影响显著,其中乙酸复合膜的机械强度最大,平均抗拉强度和穿透力分别为5.73MPa和8.63N,水溶性最小,约34%,对抗坏血酸缓释效果最明显;乳酸复合膜的延展性最优,平均断裂伸长率和穿透距离分别为71.5%和6.05mm;苹果酸复合膜的抑菌效果最佳,对大肠杆菌和金黄色葡萄球菌的抑制率分别达到98.9%和81.2%,阻水性最强,透湿系数为4.824.82×10-11g/(m·s·Pa),故可根据不同使用目的选择相应复合膜。研究结果为该类复合包装膜在实际食品上的应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号