首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
竹叶片氮含量高光谱估测方法对比研究   总被引:1,自引:0,他引:1  
为实现快速无损检测竹叶片氮含量,采用波长范围为350~2500nm的地物光谱仪获取竹叶片光谱数据,以金镶玉竹叶片为样本,对其进行高光谱分析。将高光谱原始反射率及其一阶微分、对数一阶微分和二阶微分值,与化学法测量的竹叶片氮含量值进行了相关性分析,分别获得了不同微分变化下的特征波段;基于微分变换后的高光谱反射率数据,分别采用二元线性回归、多元逐步回归、偏最小二乘回归和基于主成分分析的BP神经网络方法,建立了4种金镶玉竹叶片的氮含量高光谱估测模型。对比4种估测模型的校验结果表明,在光谱反射率的对数一阶微分变换下,采用拓扑结构为6-10-1的基于主成分分析的BP神经网络估测模型,校验环节决定系数为0.838,均方根误差RMSE为0.0452,具备较好的竹叶片氮含量估测效果。  相似文献   

2.
全氮含量是土壤肥力的核心指标之一,快速、准确测定耕层土壤全氮含量对农业生产具有重要意义.以南京市江宁区典型水稻田为研究对象,采用棋盘式布点法选取了60个点位,每个点位均在0~30 cm表土层进行取样,利用大疆精灵4多光谱无人机同时获取了土壤样本分别在5个波段(450,560,650,730,840 nm)的光谱反射率,通过土壤全氮含量与光谱反射率多元线性分析,揭示了光谱反射率数据特有的多重共线性问题,构建了基于岭回归的无人机遥感影像反演土壤全氮含量预测模型.计算结果表明,岭回归系数取0.12时,其回归R2达到了0.408,方差膨胀因子均在10以下,且回归系数具有统计学意义.基于岭回归的反演模型可以较好兼顾反演精度与光谱数据多重共线性问题.研究成果可为无人机遥感土壤氮素营养诊断提供理论依据.  相似文献   

3.
不同粒径处理的土壤全氮含量高光谱特征拟合模型   总被引:4,自引:0,他引:4  
采集新疆北疆棉田385个自然土壤样本,将筛选出的土壤样品分别过2、1、0. 5、0. 15 mm筛并测定其原始光谱反射率,利用支持向量机(Support vector machine,SVM)、偏最小二乘回归(Partial least squares regression,PLSR)和多元逐步线性回归(Stepwise multiple linear regression,SMLR)方法对土壤原始光谱及其12种光谱变换数据分别构建土壤全氮含量的估测模型,并对模型精度进行检验。结果表明,土壤原始光谱特征在各个波段与全氮含量相关性都较差,不同形式的数据变换均能够提高光谱反射率与全氮含量的相关性,同一种数据变换形式在不同粒径处理中最大相关系数所对应的波段位置差异不大。从不同粒径处理的拟合精度来看,过筛粒径越小对全氮含量的估测精度越高,3种方法的最优拟合模型都是过0. 15 mm筛的处理,其中SVM方法采用(lgR)'变换后,构建模型R2c为0. 898 7,RMSEc为0. 018 1,RPD为2. 704 9,PLSR和SMLR方法均采用R'变换,构建模型的R2c分别为0. 852 0和0. 819 6,RMSEc分别为0. 041 3和0. 043 6,RPD分别为2. 554 9和2. 437 4,3种方法在该过筛处理下均能够很好地估测土壤全氮含量。用未参与建模的样本对3种最优模型进行验证,SVM、PLSR和SMLR模型的检验R2分别为0. 822 9、0. 771 5和0. 705 4,SVM方法优于PLSR和SMLR,模型具有较好的精度和稳定性,从模型的预测误差来看,土壤全氮含量越低其预测误差也越大,在氮素含量较低的情况下无法直接通过光谱反射特征准确反演。  相似文献   

4.
冬小麦叶绿素含量高光谱检测技术   总被引:8,自引:1,他引:7  
以大田冬小麦叶绿素含量为研究对象,首先利用高光谱成像系统以线扫描方式获取其反射光谱图像,选择感兴趣区域(ROI)并计算出光谱平均反射率值;然后分别针对其原始光谱和一阶差分光谱,通过相关分析和逐步回归分析,得到能反映叶绿素含量变化的7个最佳优化波长;进而基于该优化波长采用多元线性回归(MLR)方法组建模型,通过假设检验剔除对模型贡献不显著的3个波长变量.选用剩余的4个波长即710.85、767.42、650和520 nm作为自变量重新建立模型,基于校正集和预测集模型的决定系数R2分别为0.843 4和0.709 3.研究结果表明,利用高光谱技术检测大田冬小麦叶绿素含量的方法是可行的.  相似文献   

5.
以大田冬小麦叶绿素含量为研究对象,首先利用高光谱成像系统以线扫描方式获取其反射光谱图像,选择感兴趣区域(ROI)并计算出光谱平均反射率值;然后分别针对其原始光谱和一阶差分光谱,通过相关分析和逐步回归分析,得到能反映叶绿素含量变化的7个最佳优化波长;进而基于该优化波长采用多元线性回归(MLR)方法组建模型,通过假设检验剔除对模型贡献不显著的3个波长变量。选用剩余的4个波长即710.85、767.42、650和520nm作为自变量重新建立模型,基于校正集和预测集模型的决定系数R2分别为0.8434和0.7093。研究结果表明,利用高光谱技术检测大田冬小麦叶绿素含量的方法是可行的。  相似文献   

6.
基于可见光-近红外光谱特征参数的苹果叶片氮含量预测   总被引:3,自引:0,他引:3  
苹果叶片氮素是反映苹果品质高低的营养元素之一。为了准确地估算苹果叶片全氮含量(LNC),从可见光-近红外区域的高光谱反射曲线中提取光谱特征参数,应用经验回归分析,实现了对苹果LNC的高光谱监测。研究表明,除了光谱特征曲线面积变量S_(△EFG)显著相关以及面积归一化植被指数(S_(△CDE)-S_(△FGH))/(S_(△CDE)+S_(△FGH))不相关外,其余光谱特征参数与苹果LNC都极显著相关,其中光谱特征曲线斜率K_(ge)、K_(gprv),光谱特征曲线面积S_(△ABC)、S_(△BCD),面积比值植被指数S_(△CDE)/S_(△ABC)、S_(△CDE)/S_(△BCD)、S_(△DEF)/S_(△ABC),面积归一化植被指数(S_(△CDE)-S_(△ABC))/(S_(△CDE)+S_(△ABC))、(S_(△CDE)-S_(△BCD))/(S_(△CDE)+S_(△BCD))和(S_(△DEF)-S_(△ABC))/(S_(△DEF)+S_(△ABC))可以较好地描述LNC的动态变化,这些特征参数对苹果LNC进行估算是可行的。通过检验,最终确定基于S_(△CDE)/S_(△ABC)、(S_(△CDE)-S_(△ABC))/(S_(△CDE)+S_(△ABC))和(S_(△DEF)-S_(△ABC))/(S_(△DEF)+S_(△ABC))所构建的模型为预测苹果LNC的理想模型。  相似文献   

7.
【目的】快速准确获取大面积果园冠层叶片全氮含量(LNC ,Leaf Nitrogen Content)是实现现代精准农业的基本要求。【方法】本试验通过无人机高光谱成像仪(391.9nm ~ 1006.2nm)采集了甘肃省静宁县两个典型果园的果树冠层光谱图像,包括人工灌溉的苹果示范园与自然降雨的苹果园,综合比较两区共160份冠层叶片样本的原始光谱反射率(OD)、倒数光谱(RT)、对数光谱(LF)、一阶微分光谱(FD),构建任意两个光谱波段集组合的差值植被指数(Difference spectral index,DSI )、土壤调节植被指数(Soil Adjusted Vegetation Index ,SAVI)、归一化光谱指数(Normalized Different Spectral Index, NDSI),分析三种光谱指数与叶片氮含量的相关性,利用一元线性回归模型与光谱指数构建两区最佳苹果冠层LNC估测模型。【结果】研究表明:人工灌溉区的FD-SAVI(825,536)、自然降雨区的LF-SAVI(854,392)与LNC的相关性最强,并基于FD-SAVI、LF-SAVI构建一元线性回归模型。人工灌溉区构建的FD-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6601和0.0678;自然降雨区构建的LF-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6746和0.0665。本试验采用LNC模型绘制出两个试验区的苹果树冠层叶片LNC估测图,实现对果园叶片全氮含量的精准掌握及精细化管理。  相似文献   

8.
采集添加生物炭的土壤(标记为ABS)和不添加生物炭的土壤(标记为CS),获取其近红外光谱,通过预处理算法和偏最小二乘法(partial least squares,PLS)建立两种土壤氮含量预测模型。试验结果显示,CS和ABS分别经过Baseline和Smoothing预处理的预测模型效果最好,定向系数(determination coefficient,R2)分别为0.913和0.753,预测均方根误差(root mean square error of prediction,RMSEP)分别为0.093和0.753,利用近红外光谱可对两种土壤氮含量建模预测。研究了生物炭对土壤光谱及建模的影响,结果表明,添加生物炭会改变土壤成分含量,使近红外光谱和建模不同于普通土壤,而联合建模可减小差异的影响,取得较好的预测效果,联合建模结果显示,经过Smoothing预处理的预测效果最好,R2为0.907,RMSEP为0.086。  相似文献   

9.
基于卤钨灯光源和多路光纤的土壤全氮含量检测仪研究   总被引:1,自引:0,他引:1  
为了克服LED作为主动光源的土壤全氮含量检测仪波段单一、光强信号较弱、仪器信噪比难以提高的不足,基于卤钨灯光源和特制多路光纤设计了一款便携式土壤全氮含量检测仪。检测仪选用1108、1248、1336、1450、1537、1696nm作为土壤全氮敏感波长,选用高功率卤钨灯作为光源以提高信号强度,采用“一分六”特制光纤实现1路入射光通道和6路反射光通道。性能试验表明,调理电路和卤钨灯光源工作稳定,并且卤钨灯作为主动光源测量精度更高,“一分六”石英光纤测量精度高于其他类型光纤。根据检测仪吸光度和土壤全氮含量标准值建立了不同预测模型,结果表明,采用PLS建模精度最高,建模R2C为0.8613,验证R2V为0.8042,可以用于检测仪模型嵌入。田间试验结果表明,检测仪测量值和标准值的相关系数达到0.8280。设计的检测仪测量精度较高,可以满足田间快速准确检测的目的。  相似文献   

10.
基于高光谱数据的土壤有机质含量反演模型比较   总被引:8,自引:0,他引:8  
以土壤多样化的陕西省横山县为研究区域,比较了3种基于高光谱数据的土壤有机质含量反演模型,在实验室利用ASD Field Spec FR地物光谱仪对横山县野外采集的土壤样品进行光谱测定,并通过重铬酸钾氧化容量法测定土壤有机质含量。然后对原始光谱反射率的倒数进行微分运算获得其一阶导数光谱,将原始光谱反射率、一阶导数光谱分别与土壤有机质含量进行相关性分析,得到相关性系数r较高的特征波段的一阶导数光谱,直接建立基于一阶导数光谱的多元线性逐步回归分析(MLSR)模型。同时针对这些相关性系数较高的特征波段的一阶导数光谱进行主成分分析(Principal component analysis,PCA),利用主成分分析得到的结果分别建立BP神经网络反演模型(PCA-BP)和多元线性逐步回归分析模型(PCA-MLSR)。用上述3种方法进行土壤有机质含量反演,并对3种反演结果进行精度验证与比较。实验分析结果表明:在3种模型中,基于主成分分析结果构建的PCA-BP模型在土壤有机质含量反演中决定系数(R2)最高,为0.893 0,均方根误差(RMSE)为0.118 5%;其次为运用全部主成分PCA分析结果构建的多元线性逐步回归模型,R2为0.740 7,RMSE为0.161 3%;而采用一阶导数光谱反射率构建的多元线性逐步回归模型中,最佳反演模型R2仅为0.689 9,RMSE为0.171 0%。由此说明,PCA-BP模型有机质含量反演精度明显高于多元线性逐步回归模型,利用全部主成分进行多元逐步回归,其有机质含量反演精度优于仅用累计方差贡献率大于90%的主成分进行多元逐步回归的精度,可以更好地反演土壤有机质的含量。  相似文献   

11.
基于灰度关联-极限学习机的土壤全氮预测   总被引:3,自引:0,他引:3  
为了克服近红外光谱的多重共线性、吸光度非线性等特点给土壤全氮含量预测带来的影响,引入灰度关联-极限学习机方法选择出具有较好预测能力的波长组合,以建立高精度土壤全氮含量预测模型。首先利用一阶微分光谱得到反映土壤全氮含量的敏感谱区,再利用灰度关联法得到土壤全氮含量的敏感波长,分别为1007、1128、1360、1596、1696、1836、2149、2262nm。最后采用极限学习机,将上述敏感波长作为输入,建立了土壤全氮预测模型。作为对照,同时采用传统相关分析方法选择了敏感波长并建立了回归模型。2种建模结果表明,灰度关联-极限学习机建立的土壤全氮预测模型,其建模决定系数R2c为0.9134,预测决定系数R2v为0.8787,建模精度和预测精度都比传统建模方法高。特别在预测低氮含量土壤时,灰度关联-极限学习机方法优势更明显。  相似文献   

12.
西南岩溶区土壤全氮含量的空间变异分析   总被引:2,自引:0,他引:2  
选择典型的岩溶峰丛洼地区域,在利用多元逐步回归分析研究0~20 cm深度土壤全氮含量与地形指数因子关系的基础上,利用普通克里格法(OK)、单变量协同克里格法(COK)和多变量协同克里格法(MCOK)对土壤全氮含量的空间变异性进行了分析。结果表明:研究区域土壤全氮含量空间分布可以用两个回归模型来表征。克里格插值分析表明,当全氮含量与地形指数因子相关系数较低时,COK法并不能有效提高全氮预测精度;随着协同变量的增加,MCOK法能够显著提高全氮预测精度。  相似文献   

13.
生物炭对砂壤土氮素淋失的影响试验研究   总被引:2,自引:0,他引:2  
通过室内土柱模拟试验,研究了生物炭对砂壤土的p H值、电导率及氮素淋失的影响。试验设5个生物炭添加比例,分别为0(CK)、1%(T1)、2%(T2)、4%(T3)、6%(T4)。结果表明,p H值和电导率均随生物炭添加比例的增加呈逐渐升高的趋势,其中,各处理砂壤土的电导率较CK分别提高了2.79%、10.88%、11.30%、12.50%。土壤淋溶液中氮素随生物炭添加比例的增加,呈逐渐减小趋势,氮素累积淋溶量也逐渐减小。各处理淋溶液中氮素的淋失总量较CK分别降低了2.89%、7.41%、9.50%和12.25%。研究表明,生物炭能够有效改变砂壤土的理化性质,降低氮素的淋失量,降低地下水面源污染的风险。  相似文献   

14.
为解决河北省黑龙港区砂壤质氮肥施用问题,分别设置不施氮肥T1,总施氮量为240 kg/hm2氮肥基追比T2(3:7)、T3(4:6)、T4(5:5)、T6(6:4)和T6(7:3)处理.研究小麦水氮利用效率以及土壤含水量、贮水量、氮素动态变化规律.结果表明,砂壤质土壤氮肥基追比3:7的处理水分利用效率、氮肥生产效率最高...  相似文献   

15.
以BP网络(Back Propagation Network)为基础,建立了小流域土壤养分(包括N,P,K3种成分)为输出层,流域出口处的洪量,输沙量及流域的年降雨量为输入层的包含一个中间层的BP网络,经检验,模型输出与多元线性回归模型计算结果一致。模型的建立及求解为水土保持中土壤养分的流失预测研究提供了一种新方法。  相似文献   

16.
基于高光谱的抽穗期寒地水稻叶片氮素预测模型   总被引:3,自引:0,他引:3  
为快速、无损地监测水稻叶片氮素营养状况,开展了基于高光谱成像技术的抽穗期寒地水稻叶片氮素预测模型的研究。以不同施氮水平的寒地水稻叶片为研究对象,采用连续投影算法(successive projections algorithm,SPA)和分段主成分分析(segmented principal components analysis,SPCA)方法选择水稻叶片的高光谱特征波段,SPCA方法降维后结合相关分析(correlation analysis,CA)构建特征光谱参量,并建立基于全波段高光谱数据、SPA特征波段及SPCA特征光谱参量的多种回归分析模型且对模型进行检验和筛选。研究结果表明:在校正集决定系数RC2上,基于多元逐步回归分析(multiple stepwise regression analysis,MSRA)的全波段模型较好,RC2=0.9 6 4,校正集均方根误差RMSEC=0.083;RP2为0.961,RMSEP为0.050。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了技术支撑和理论依据。  相似文献   

17.
受水稻冠层几何结构的影响,传统的无人机高光谱获取到的反射光谱信息中包含与水稻内部组成物质无关的镜面反射信息,从而影响水稻氮素含量的反演精度,因此在利用无人机获取水稻冠层反射光谱信息时,有必要考虑通过偏振测量技术去除反射光谱中的镜面反射分量,进而实现提升水稻氮素含量反演精度的目的。基于无人机偏振遥感测量得到的水稻分蘖期多角度偏振光谱数据和与之对应的氮素含量数据,采用植被指数方法分析二者之间的相关性,得到了水稻冠层偏振光谱数据与其对应氮素含量相关性最高时对应的角度,选取该观测角度下的偏振光谱数据,利用连续投影法(Successive projections algorithm, SPA)提取特征波段,在此基础上,基于数学变换的方法,提出了构建植被指数的新思路,构建了由2个波段组成的偏振光谱植被指数(Polarisation spectrum vegetation index, PSVI),并利用线性回归方法建立水稻冠层氮素含量的反演模型。结果表明,通过对不同观测天顶角下水稻冠层偏振光谱数据与氮素含量相关性分析,得到最佳观测角度为-15°(后向观测15°);利用连续投影法提取得到该角度下偏振...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号