首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氮素对灌浆期夏玉米叶片蛋白质表达的调控   总被引:2,自引:0,他引:2  
【目的】在大田生产条件下研究氮素对灌浆期玉米叶片蛋白质表达的调控。【方法】在大田生产条件下,以紧凑耐密型玉米杂交种登海618为试验材料,研究施氮对玉米穗位叶花后净光合速率、硝酸还原酶(NR)活性、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量和可溶性蛋白含量的影响。采用TCA-丙酮沉淀法提取灌浆期(花后20 d)两个施氮处理下玉米穗位叶总蛋白质,并用双向凝胶电泳技术(2-DE)分离获得蛋白质图谱。采用ImageMaster-2D Elite 7.0图像分析软件对蛋白质图谱进行比较,确定玉米叶片应答灌浆期施氮处理的差异蛋白点。通过MALDI-TOF/TOF MS质谱分析及NCBInr数据库搜索,对差异表达蛋白质进行鉴定并分析其涉及的生物学功能。【结果】开花后,随生育进程的推进,玉米穗位叶净光合速率、叶绿素含量、NR、SOD和POD活性及可溶性蛋白含量均呈下降趋势,而MDA含量则呈上升趋势。相对于不施氮处理,施氮处理下叶片叶绿素含量、NR、SOD和POD活性及可溶性蛋白含量均显著提高,而MDA含量则显著下降。对灌浆期玉米叶片进行双向电泳及图谱分析,分别在施氮和不施氮条件下检测出1 086和1 170个蛋白点。通过图像分析软件进行成对匹配分析,共得到29个显著差异蛋白点。经质谱鉴定分析,29个显著差异蛋白点中有25个被成功鉴定,鉴定成功的蛋白中除未知蛋白(蛋白点55)和30s核糖体蛋白(蛋白点1089)外,其余蛋白表达量均在施氮条件下上调。通过搜索NCBInr数据库,差异表达的蛋白主要分为8类,包括13个能量相关蛋白,2个防御相关蛋白,2个蛋白合成相关蛋白,2个蛋白目的和储存相关蛋白,1个细胞生长相关蛋白,1个次级代谢相关蛋白,1个转运相关蛋白和3个未知蛋白。【结论】施氮对灌浆期玉米叶片光合能力、碳代谢能力、防御能力、蛋白合成能力、蛋白目的和储存能力、以及次级代谢能力等均有显著提升作用。  相似文献   

2.
夏玉米光谱特征对其不同色素含量的响应差异   总被引:1,自引:0,他引:1  
在不同施氮水平夏玉米的6个典型生育期,采用化学方法测定冠层叶绿素含量,利用叶绿素计测定的叶绿素读数以及光谱反射率,系统分析了单波段反射率、可见光和近红外波段组合而成的归一化植被指数(NDVI)、比值植被指数(RVI)等8种常见植被指数与相应时期2种方法测定的叶绿素含量的相关性。结果表明,随着施氮量的增加,叶绿素含量和冠层近红外波段反射率都随之增加;整个生育期中孕穗期在近红外区域反射率最高,与可见光波段反射率相差最大;6个生育期单波段510~1 100 nm反射率、NDVI、RVI等植被指数与叶绿素含量的2种测定结果显著相关或极显著相关,植被指数的表现较单波段更好,且从苗期到乳熟期,各波段反射率与叶绿素的相关性逐渐增强。整体来讲,可见光中560、660 nm和近红外760、810、590和1 300 nm组合的NDVI在各生育期与2个农学指标的相关性较好,选择NDVI(560,760)可以准确拟合夏玉米叶片叶绿素含量,其对化学方法测定的叶绿素含量拟合效果较佳。  相似文献   

3.
基于高光谱的夏玉米氮含量及产量估测模型   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
对15个常用玉米自交系及其105个杂交组合穗位叶光合速率的研究表明:自交系间及其杂交组合间的光合速率各异;玉米穗位叶光合速率的大小与单株产量无关;自交系光合速率的GCA与其表型值无关,杂交组合光合速率的高低主要决定于组合光合速率的SCA效应值;玉米穗位叶光合速率的遗传力较低,光合速率的大小主要决定于基因的非加性效应,且易受环境影响。  相似文献   

6.
7.
试验采用裂区设计,以耕作方式为主区,施肥方式为副区,研究田间不同耕作方式下,施肥方式对玉米穗位叶衰老代谢及籽粒产量的影响。结果表明,相同耕作方式下,控释尿素处理可显著提高植株的总吸氮量,在玉米吐丝后光合叶面积指数显著高于常规尿素处理(P〈0.05),控释尿素处理也可显著提高玉米穗位叶SOD、POD和CAT活性,增加可溶性蛋白含量,降低MDA积累量。因而,该控释尿素处理对籽粒灌浆速率的提高效果显著。相同施肥方式下,深松处理可以提高植株水分利用效率,有利于玉米产量的提高。深松与控释尿素耦合满足了植株对水分氮素吸收利用的时空需求,显著提高了玉米吐丝后的光合叶面积指数、抗氧化酶活性、灌浆速率和干物质积累量,延缓穗位叶衰老效果最佳,籽粒产量最高。  相似文献   

8.
碳、氮代谢是植物体内最主要的两大代谢过程,玉米一生中碳、氮代谢的协调在很大程度上决定着产量结果。实验用可见分光光度法对不同施氮水平下玉米穗位叶的碳氮代谢指标进行了检测。结果表明,施氮量在120~180 kg?hm-2间明显促进玉米穗位叶蔗糖的积累,在120~240 kg?hm-2间明显促进碳代谢的关键酶蔗糖磷酸合成酶(SPS)、氮代谢的关键酶硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性的增强。  相似文献   

9.
10.
种植密度和行距配置对玉米穗位叶光合特性的影响   总被引:5,自引:1,他引:4  
玉米穗位叶叶绿素含量、净光合速率(Pn)、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)均随密度增大而呈降低趋势,且均在生育后期差异较显著。光合作用关键酶磷酸烯醇式丙酮酸羧化酶(PEP-Case)和1,5-二磷酸核酮糖羧化酶(RuBPCase)活性亦呈降低趋势。叶绿素含量、Pn、Fv/Fm、ΦPSⅡ、PEPCase和RuBPCase活性在低密度下各行距配置间均无显著差异,但在中高密度下,"80+40"配置均高于其他配置,尤其是在生育后期差异显著,适宜的行距配置可提高穗位叶光合能力。  相似文献   

11.
王磊  白由路 《中国农业科学》2005,38(11):2268-2276
 采用盆栽试验研究了不同氮营养水平下的春玉米叶片叶绿素和全氮含量与叶片光谱反射率的相关性。结果表明,拔节期和喇叭口期是玉米氮素光谱营养诊断的敏感时期;利用绿峰处叶片最大光谱反射率反演玉米叶片氮素含量和叶绿素含量的精度为:喇叭口期>拔节期>开花吐丝期;不同生育时期诊断玉米叶片氮素含量和叶绿素含量时所采用的光谱波段也不同,拔节期和喇叭口期采用可见光波段的光谱反射率可靠性较高,而开花吐丝期采用近红外波段的光谱反射率可靠性较高;两波段组合光谱变量对叶片叶绿素和全氮含量的判别精度高于单一波段的判别精度。  相似文献   

12.
不同光谱植被指数反演冬小麦叶氮含量的敏感性研究   总被引:6,自引:0,他引:6  
【目的】氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据。【方法】以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R~2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性。【结果】反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R~2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R~2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R~2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R~2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R~2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R~2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点)。【结论】利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性。应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性。  相似文献   

13.
基于叶片反射光谱估测水稻氮营养指数   总被引:1,自引:0,他引:1  
【目的】基于叶片反射光谱建立快速、无损监测水稻氮营养指数(nitrogen nutrition index,NNI)的估算模型。【方法】2018—2019年开展2个水稻品种(徽两优898和Y两优900)及5个氮肥梯度(施氮量为0、75、150、225和300 kg·hm-2,分别记为N0、N1、N2、N3、N4)的田间小区试验,测定关键生育期不同叶位叶片反射光谱和植株NNI,构建多种光谱指数的水稻NNI监测模型。【结果】单叶及叶位组合的敏感波段均分布在540 nm的绿光波长处,其与近红外波段构成的窄波段比值指数SR(R900,R540)可较好反演水稻NNI。但不同叶位叶片窄波段比值指数与水稻NNI的预测精度表现不同,顶3叶(L3)预测精度最好(R2=0.731,RMSE =0.130,RE=11.6%),顶2叶(L2)次之(R2=0.707,RMSE =0.136,RE =12.2%),顶1叶(L1)最差(R2=0.443,RMSE =0.187,RE =14.7%);顶2叶和顶3叶组合平均光谱(L23)的预测精度优于单叶水平和其他叶位组合(R2=0.740,RMSE =0.128,RE =11.5%)。再将窄波段比值指数SR(R900,R540)近红外与绿光区域分别重采样50 nm和10 nm,所构建的宽波段比值指数SR[AR(900±50),AR(540±10)]模型精度较SR(R900,R540)未明显降低,且在L23水平下2个模型的模型精度和预测精度基本一致(R2=0.740,RMSE =0.128,RE =11.5%)。水稻NNI小于1时与产量呈线性的正相关关系(P<0.05),大于1时产量趋于平稳。【结论】L2和L3叶片反射光谱为监测水稻NNI的敏感叶位,其中叶位组合L23可提高模型预测精度。基于叶片反射光谱构建的多种波段比值指数(SR(R900,R540)和SR[AR(900±50),AR(540±10)])可快速估测水稻NNI,从而为不同传感器对水稻氮营养指数估测监测研究提供了理论依据。  相似文献   

14.
氮肥对不同产量水平的玉米茎叶含氮量的影响   总被引:3,自引:0,他引:3  
研究施肥与不同玉米品种本身的吸肥规律的关系,为提高氮素的利用率提供依据,在施磷钾肥相同的条件下,设置4个施氮量水平,对2个产量水平的玉米品种(黔单21 和墨白94)茎叶含氮量的变化进行研究,结果表明,相对高产品种茎叶的含氮量总是高于相对低产品种.施氮量的多少,对相对高产品种拔节期茎叶含氮量影响较大,对相对低产品种整个生育期茎叶中含氮量影响较大.随着施氮肥量的增加,相对高产的品种茎叶的含氮量随之增加,而相对低产品种茎叶含氮量在施高氮条件下反而下降.  相似文献   

15.
对可见光波段至短波红外波段(350~2 500 nm)棉花田间冠层光谱反射率与叶片含氮量间的关系进行了相关分析.结果表明,350~732、733~940和1 970~2 477 nm波段的光谱反射率与叶片含氮量极显著相关;940~1 176 nm波段的光谱反射率与叶片含氮量显著相关,以上波段为叶片全氮敏感波段.通过分析叶片含氮量与高光谱特征参数关系,得出吸收谷特征参数Depth1154和PRI(570,530 nm)可以用来预测盛花期叶片含氮量,其中Depth1154的复相关系数最高达到0.747 3,为运用遥感技术大面积、迅速、无破坏地来预测棉花生长状况以提供可能.  相似文献   

16.
竞争对不同基因型玉米产量及氮素含量的影响   总被引:1,自引:1,他引:1  
通过大田试验,比较研究了不同基因型玉米在混播时的竞争能力与产量之间的关系。研究结果表明,在不同密度条件下,竞争可以使4个玉米品种的产量发生变化,紧凑型玉米品种产量较对照有所提高,其他3个品种显著降低;竞争显著增加了ZD958叶片N素含量,而其他3个品种叶片N素积累量显著下降;另外,竞争显著升高了4个品种茎秆和籽粒中的N素含量。说明不同基因型玉米之间的竞争力存在差异,紧凑型玉米品种ZD958在4个玉米品种当中具有较强的竞争能力。  相似文献   

17.
以高淀粉玉米、糯玉米和甜玉米为试验材料,研究了氮肥施用量对春玉米穗位叶蔗糖合成的影响。结果表明,春玉米穗位叶的蔗糖含量、光合速率以吐丝后7d最高,随灌浆进程的推进,呈逐渐降低的趋势,氮肥处理之间差异明显,不同品种对氮素反应不同。磷酸蔗糖合成酶活性与光合速率变化基本一致。春玉米吐丝后穗位叶中蔗糖合成酶活性呈单峰曲线变化,在吐丝后28d活性最高(但各品种N0处理在吐丝后21d活性最高),35d以后迅速下降。品种间存在差异。  相似文献   

18.
目的】棉花叶色和叶片氮含量在各生育时期的变化规律,研究叶色、叶片氮含量与产量的相关性,基于棉花叶色和叶片氮含量的产量估测。【方法】以新陆早45号、新陆早58号、新陆早62号、新陆早50号、鲁棉研24号为材料,设置4个施氮水平:N0(不施氮对照)、N1(120 kg/hm2)、N2(240 kg/hm2)、N3(360 kg/hm2),采用两因素完全随机区组设计,共20个处理,重复3次。【结果】(1)叶色值在全生育期变化趋势为吐絮期>铃期>花铃期>盛蕾期>现蕾期,叶片氮含量在全生育期变化趋势为花铃期>铃期>吐絮期>现蕾期>蕾期;(2)棉花叶色值、叶片氮含量、产量均呈线性正相关。其中棉花叶色值与叶片氮R2达0.37**,叶色值与产量的R2达0.56**,叶片氮含量与产量的R2达0.61**;(3)通过产量对叶色值和叶片氮含量的响应特征,可基于二者实现棉花测产,产量估测方程为Y=363.48-65.175*S+274.079*N,R2达0.69(S指叶色值,N指叶片氮含量,Y指产量)。【结论】各棉花品种均在N3处理下产量最高,且通过叶色值和叶片氮含量实现棉花产量估测,在棉花测产中是较其它估产更精准的一种方法。  相似文献   

19.
【目的】叶片氮素状况是小麦生产中精确施氮管理与调控的前提,实时无损监测叶片氮素状况对小麦生产管理具有重要意义。本文旨在综合分析不同环境下小麦冠层光谱响应差异,进而构建其估测模型,为小麦氮肥合理运筹提供技术支持。【方法】本研究基于3种不同土壤质地(砂土、壤土和黏土)、5种不同施氮水平(0、120、225、330和435 kg•hm-2)及3种河南省主栽小麦品种(矮抗58、周麦22和郑麦366)连续2年的大田试验,于小麦主要生育时期同步测定冠层光谱反射率和叶片氮含量,对3种不同土壤质地条件下小麦冠层叶片氮含量的高光谱响应差异进行比较,系统分析350—1 050 nm 波段范围内任意两波段组合而成的差值(DSI)、比值(RSI)及归一化差值(NDSI)光谱指数与叶片氮含量的量化关系,并建立估算模型。【结果】冠层光谱反射率在不同施氮水平和不同生育时期下存在明显差异,但趋势基本一致;比较3种土壤质地小麦冠层光谱反射率大小表现为:黏土>壤土>砂土,可以反映小麦实时田间长势。通过系统分析3种土壤质地小麦冠层反射光谱与对应叶片氮含量间的定量关系,表明在可见光和近红外区域均有较好的相关性,但敏感波段区域有所不同。对3种质地获取的样本进行系统分析表明,砂土、壤土和黏土质地小麦叶片氮含量分别以光谱指数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)建模结果表现最好,决定系数分别达到0.88、0.87和0.87。经不同年份独立资料检验结果显示,基于上述光谱指数估测小麦叶片氮含量的预测决定系数分别为0.87、0.85和0.77,预测均方根误差分别为0.31、0.32和0.26。【结论】利用光谱参数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)为自变量建立的估测模型分别可以较好地预测砂土、壤土和黏土3种质地小麦叶片氮含量。  相似文献   

20.
基于导数光谱的小麦冠层叶片含水量反演   总被引:3,自引:0,他引:3  
【目的】以高光谱技术实现小麦含水量信息的快速、无损与准确获取,为小麦灌溉的精确管理提供科学依据。【方法】利用水氮胁迫试验条件下小麦主要生长期的导数光谱构建了16种新指数,将其与NDII、WBI以及NDWI等常用指数进行比较分析,筛选小麦叶片含水量反演最佳光谱指数,并利用其建立反演模型进行小麦含水量的遥感填图。【结果】在各指数中,FD730-955对小麦冠层叶片含水量的估测结果最佳,其估测模型(对数形式)校正决定系数(C-R2)与检验决定系数(V-R2)分别达0.749与0.742,优于NDII等常用指数;FD730-955所建模型对32个未知样的预测结果与实测值相似度较高,其回归拟合模型R2达0.763,RMSE仅为0.024,取得了良好预测结果,且对叶片含水量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对含水量估测的影响;反演模型对OMIS影像的填图结果与地面实测值拟合模型R2达0.647,RMSE仅为0.027,具有较高的反演精度。【结论】导数光谱可实现小麦冠层叶片含水量信息的准确估测,其中FD730-955系反演的优选指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号