首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract. Large nitrogen (N) inputs to outdoor pig farms in the UK can lead to high nitrate leaching losses and accumulation of surplus N in soil. We investigated the residual effects of three contrasting outdoor pig systems as compared to an arable control on nitrate leaching and soil N supply for subsequent spring cereal crops grown on a sandy loam soil during 1997/98 and 1998/99 harvest seasons. Previously, the pig systems had been stocked for 2 years from October 1995 and were designated current commercial practice (CCP, 25 sows ha?1 on stubble), improved management practice (IMP, 18 sows ha?1 on undersown stubble) and best management practice (BMP, 12 sows ha?1 on established grass). Estimated soil N surpluses by the end of stocking in September 1997 were 576, 398, 265 and 27 kg ha?1 N for the CCP, IMP, BMP and continuous arable control, respectively. Nitrate leaching losses in the first winter were 235, 198, 137 and 38 kg ha?1 N from the former CCP, IMP and BMP systems and the arable control, respectively. These losses from the former pig systems were equivalent to 41–52% of the estimated soil N surpluses. Leaching losses were much smaller in the second winter at 21, 14, 23 and 19 kg ha?1 N, respectively. Cultivation timing had no effect (P>0.05) on leaching losses in year 1, but cultivation in October compared with December increased nitrate leaching by a mean of 14 kg ha?1 N across all treatments in year 2. Leaching losses over the two winters were correlated (P<0.001) with autumn soil mineral N (SMN) contents. In both seasons, spring SMN, grain yields and N offtakes at harvest were similar (P>0.05) for the three previous pig systems and the arable control, and cultivation timing had no effect (P>0.05) on grain yields and crop N offtake. This systems study has shown that nitrate leaching losses during the first winter after outdoor pig farming can be large, with no residual available N benefits to following cereal crops unless that first winter is much drier than average.  相似文献   

3.
Abstract. Nitrate leaching and soil mineral N status under grassland were measured on three contrasting soils, spanning winters 1995/96, 1996/97 and 1997/98, in Western England. The soils investigated were a freely draining silty clay loam (Rosemaund), a well drained loam (IGER 1) and a poorly drained clay loam (IGER 2). The effects of reseeding (ploughing and resowing grass) at IGER 1 and IGER 2 in autumn 1995 or 1996 were compared with undisturbed pasture. Reseeding at Rosemaund, in autumns 1995 or 1996, or spring 1996 was compared with undisturbed pasture of 3 sward ages (2, 5, >50 years).
Nitrate-N leaching losses during the winter immediately following autumn reseeding ranged between 60 and 350 kg N ha–1 in 1995/96, depending on soil type, sward management history and rainfall. Losses were much less in the following winter when treatments were repeated (10–107 kg N ha–1).
Reseeding in spring had little effect on soil mineral N content or leaching losses in the following autumn, compared with undisturbed pasture. Similarly, leaching losses from autumn reseeds in the second winter after cultivation were the same as undisturbed pasture (1-19 kg N ha–1). The effect of ploughing grassland for reseeding was relatively short-term, in contrast to the effect of repeated annual cultivation associated with arable rotations.  相似文献   

4.
Nitrate leaching from short-rotation coppice   总被引:1,自引:0,他引:1  
In the UK, short‐rotation coppice (SRC) is expected to become a significant source of ‘bio‐energy’ over the next few years. Thus, it is important to establish how nitrate leaching losses compare with conventional arable cropping, especially if SRC is grown in Nitrate Vulnerable Zones. Nitrate leaching was measured using porous ceramic cups in each of the three phases in the lifespan of SRC, establishment, harvest and removal and was compared with conventional arable cropping. Nitrogen concentrations were increased in drainage water as soon as the crop cover was destroyed to plant the SRC (peak 70 mg L?1 nitrate‐N) and increased further (peak 134 mg L?1 nitrate‐N) on cultivation. Once the coppice crop was established, concentrations returned to a smaller level (average 18 mg L?1 nitrate‐N). Concentrations were not affected by the harvesting operation, and annual applications of nitrogen (40, 60 and 100 kg ha?1 N in the first, second and third years, respectively) had little effect. By contrast, concentrations in the arable rotation showed a regular pattern of increase in the autumn, and the average peak value over the 4 years was 54 mg L?1 nitrate‐N. When the SRC was ‘grubbed up’ and roots removed, the soil disturbance resulted in a flush of mineralization which, combined with a lack of crop cover, led to increased nitrate‐N in leachate (peak 67 mg L?1 nitrate‐N). In a normal life‐span of SRC (15–30 years), the relatively large nitrate losses on establishment and at final grubbing up would be offset by small losses during the productive harvest phase, especially when compared with results under the arable rotation.  相似文献   

5.
Nitrate leaching from arable and horticultural land   总被引:7,自引:0,他引:7  
  相似文献   

6.
Abstract. 15N labelled NH4NO3 (fertilizer N) was applied at a rate of 50 kg N ha–1 to an Ando-Humic Nitisol and two maize crops grown on it. About 20 months later, soil cores were taken to a depth of 2.5 m. Leached fertilizer N was found between 1.4 m and 1.8 m deep and was delayed relative to net drainage by between 4.2 and 4.9 pore volumes. Anion exchange capacity (AEC) increased ten-fold down the profile, up to 2.9 cmolckg–1. The delay to fertilizer N leaching was predicted to be between 4.1 and 5.3 pore volumes when calculated from the AEC and from an equation relating delay due to AEC in laboratory columns of repacked soil obtained by Wong et al. (1990b). It was concluded that the nitrate leaching delay equation was also valid in undisturbed field profiles. Two concentration maxima for mineral N were found, which did not usually coincide with the fertilizer N and were thought to result from mineralization of soil organic matter and plant residues at the end of each season. The delay equation overestimated their leaching delay but the results were considered close enough to support the hypothesis for their formation.  相似文献   

7.
为了解湖北省集约化生猪养殖系统的资源消耗及环境影响程度和识别重点生产环节造成的环境问题,基于生命周期评价(life cycle assessment,LCA)理论和Sima Pro(Version7.1.8)软件,利用Eco-indicator99生态指数法环境影响评价指标体系对湖北省集约化生猪养殖系统的环境影响进行了评估。结果表明:1)集约化养殖系统的环境单一评分为45.13分;2)主要的影响类型是土地占用(59.84%)、吸入无机物对呼吸系统损害(14.29%)、化石资源消耗(9.97%)、致癌物损害(7.80%)、酸化/富营养化(5.18%)、气候变化(1.90%);3)环境单一评分构成中仔猪生产阶段比例占17.91%,断奶后育肥阶段比例占82.09%,而且仔猪生产和育肥阶段的饲料消耗对土地占用、致癌物损害影响类型贡献较大,日常生产管理和粪污处理对吸入无机物对呼吸系统损害、酸化/富营养化、气候变化影响类型贡献较大;4)损害结果表明对人体健康影响最大环节是日常生产管理,对生态质量、资源消耗影响最大环节是饲料消耗。由此表明研究结果对生猪生产过程中减少资源消耗,采取降低环境影响的方法和措施,推动生猪养殖可持续发展有指导意义。  相似文献   

8.
可变电荷与恒电荷稻田土壤硝态氮和铵态氮淋失规律   总被引:3,自引:0,他引:3  
A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate (NO3--N) and ammonium (NH4+-N) leaching with N isotopes for one consecutive year. An irrigation and intermittent drainage pattern was adopted to mimic natural occurrence of rainfall during the upland crop season and drainage management during the flooded rice season. Treatments to each soil type were no-N controls (CK), 15N-labeled (NH4)2SO4 (NS) and milk vetch (NV) applied at a rate equivalent to 238 kg N ha–1 to unplanted lysimeters, totaling six treatments replicated in triplicates. Results indicated that the soil type dominated N leaching characteristics. In the case of PC, NO3--N accounted for 78% of the total leached inorganic N; NS was prone to leach three times more than the NV, being 8.2% and 2.4% of added 15N respectively; and > 85% of leached NO3--N came from native N in the soil. In the case of VC, NH4+-N made up to 92% of the total inorganic N in leachate. Moreover, NH4+-N leaching was detected throughout the whole incubation, and was particularly high during the flooded season. NO3--N leaching in VC occurred later at a lower rate compared to that in PC. The findings of this study indicate that NO3--N leaching during the drained season in permanent-charge paddy soils and NH4+-N leaching in variable-charge soils deserve more attention for regional environmental control.  相似文献   

9.
Nitrogen losses from outdoor pig farming systems   总被引:2,自引:0,他引:2  
Abstract. Nitrogen losses via nitrate leaching, ammonia volatilization and nitrous oxide emissions were measured from contrasting outdoor pig farming systems in a two year field study. Four 1‐ha paddocks representing three outdoor pig management systems and an arable control were established on a sandy loam soil in Berkshire, UK. The pig management systems represented: (i) current commercial practice (CCP) ‐ 25 dry sows ha?1 on arable stubble; (ii) ‘improved’ management practice (IMP) ‐ 18 dry sows ha?1 on stubble undersown with grass, and (iii) ‘best’ management practice (BMP) 12 dry sows ha?1 on established grass. Nitrogen (N) inputs in the feed were measured and N offtakes in the pig meat estimated to calculate a nitrogen balance for each system. In the first winter, mean nitrate‐N concentrations in drainage water from the CCP, IMP, BMP and arable paddocks were 28, 25, 8 and 10 mg NO3 l?1, respectively. On the BMP system, leaching losses were limited by the grass cover, but this was destroyed by the pigs before the start of the second drainage season. In the second winter, mean concentrations increased to 111, 106 and 105 mg NO3‐N l?1 from the CCP, IMP and BMP systems, respectively, compared to only 32 mg NO3‐N l?1 on the arable paddock. Ammonia (NH3) volatilization measurements indicated that losses from outdoor dry sows were in the region of 11 g NH3‐N sow?1 day?1. Urine patches were identified as the major source of nitrous oxide (N2O) emissions, with N2O‐N losses estimated at less than 1% of the total N excreted. The nitrogen balance calculations indicated that N inputs to all the outdoor pig systems greatly exceeded N offtakes plus N losses, with estimated N surpluses on the CCP, IMP and BMP systems after 2 years of stocking at 576, 398 and 264 kg N ha?1, respectively, compared with 27 kg N ha?1 on the arable control. These large N surpluses are likely to exacerbate nitrate leaching losses in following seasons and make a contribution to the N requirement of future crops.  相似文献   

10.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

11.
Abstract. Flow and nitrate concentrations were measured weekly for four years at twelve stream-water monitoring sites in a catchment in the English Midlands designated as a Nitrate Advisory Area. Farm surveys and satellite images have provided soil and land use information. Measurements show the nitrate load to be dominated by discharge, with large variability due to differing weather conditions from year to year. Within-year variability in nitrate concentrations is also related to weather conditions, with high concentrations when field capacity is reached if this occurs late in the year. There is also clear evidence of dilution of nitrate during intense storms. The effect of changing weather conditions makes it impossible to identify catchment-scale changes in leaching due to changes in agricultural practice over a period as short as four years. Measurements from a major spring in the catchment show an increasing trend in nitrate concentrations through the period. There is some evidence that the greatest N leaching to streams in the catchment is associated with intensive grassland on soils which are naturally poorly drained.  相似文献   

12.
In Burkina Faso, significant amounts of endosulfan are applied to cotton fields; in addition, urban vegetable agriculture is often characterised by high fertiliser inputs, such as urban solid wastes containing heavy metals (e.g., Cu and Cd). Thus, the relevance of surrounding cotton and urban vegetable plots with vetiver (Vetiveria zizanioides) hedges to reduce environmental pollution by micropollutants was investigated using a leaching experiment, with outdoor lysimeters filled with two representative agricultural soils of Burkina Faso: Vertisol and Lixisol. After 6 months, little Cu was found in the leachates (< 0.010% of the applied amount) due to its high adsorption coefficient and its tendency to remain at the soil surface. Despite leachate and bromide recoveries being greater in soils planted with vetiver grass than in the bare soils, smaller amounts of endosulfan and Cd were found in the effluents from the planted soils (0.01% to 0.70% of the applied amount) than in those from the bare soils (0.01% to 1.48% of the applied amount), in agreement with their adsorption coefficients. These results may also be explained by a greater degradation of endosulfan in planted soils compared to bare soils and the absorption of Cd by vetiver. Thus, vetiver may decrease the risk of groundwater contamination, especially for Cd and endosulfan, which are more mobile than Cu. In addition, despite the smaller amounts of endosulfan and Cd measured in the Vertisol leachates (0.01% and 0.04% of the applied amount, respectively) compared to the Lixisol leachates, vetiver was more effective in decreasing the leaching of micropollutants if planted on Lixisol rather than on Vertisol. Further field monitoring is necessary to demonstrate the effectiveness of vetiver under the climatic conditions of Burkina Faso.  相似文献   

13.
Abstract. This paper compares nitrate leaching losses from organic farms, which depended on legumes for their nitrogen inputs (66 site years) with those from conventional farms using fertilizers under similar cropping and climatic conditions (188 site years). The conventional farms were within Nitrate Sensitive Areas in England, but sites following special practices associated with that scheme were excluded. Nitrate losses during the organic ley phase (including the winter of ploughing out) were similar (45 kg N ha–1) to those from conventional long-term grass receiving fertilizer N inputs of less than 200 kg N ha–1 (44 kg N ha–1) and from the grass phase of conventional ley-arable rotations (50 kg N ha–1). Losses from conventional grass receiving higher N inputs were greater than from organic or less intensive grass. Nitrate losses following arable crops averaged 47 and 58 kg N ha–1 for the organic and conventional systems respectively, with part of the difference being due to the greater proportion of non-cereal break crops in the latter. Thus under similar cropping, losses from organic systems are similar to or slightly smaller than those from conventional farms following best practice.  相似文献   

14.
The impact on nitrate leaching of agronomic practices designed to immobilize nitrogen in autumn and winter was investigated over 4 years. Experimental treatments (reducing tillage depth, incorporating harvest residues, reducing fertilizer N by growing unfertilized grass or by spring-sown rather than autumn-sown crops) were compared with a control treatment in which autumn crops were sown after burning harvest residues, mouldboard ploughing and seedbed preparation. Winter cover cropping was also compared with winter fallowing. In the first year, incorporation of harvest residues or reducing tillage depth significantly decreased nitrate leaching compared with the control. Unfertilized grass did not affect leaching in the first winter but significantly decreased it in years 2 and 3. When winter cover crops were grown, nitrate leaching was never less than that under an autumn-sown cereal, and in the subsequent year leaching could be significantly greater. Winter fallowing caused the most nitrate leaching over the year. In the winter following a spring-sown crop, leaching under an autumn-sown crop greatly increased. Summed over 4 years, most leaching occurred with the winter fallow—spring cropping treatment; it was 18% more than where a winter cover crop preceded the spring crop. Reducing tillage depth or incorporating harvest residues did not significantly decrease leaching. Unfertilized grass ley followed by an autumn-sown cereal in the fourth year was the only treatment that significantly decrease leaching. Unfertilized grass ley followed by an autumn-sown cereal in the fourth year was the only treatment that significantly reduced leaching loss compared with the control. Incorporating harvest residues resulted in a balance between annual N inputs and outputs. All other treatments required substantial net annual N mineralization to balance annual inputs and outputs.  相似文献   

15.
Abstract. Under a UK Government consultation procedure announced in 2001, it was proposed that measures agreed within already designated Nitrate Vulnerable Zones (NVZ 's) would be extended to include a considerably increased area of England, Wales and Scotland. Since existing NVZ 's in the UK have included relatively little grassland, it is important to examine how nitrate losses from grassland areas, especially from animal manures, one of the major potential sources of nitrate loss, can be minimized. Experiments were carried out on freely draining grassland soils at four sites (Devon, Hampshire, Shropshire and N Yorkshire) representative of a wide range of climatic and farming conditions across lowland England, over a four year period, 1990/91 to 1993/94. Slurry was applied to experimental plots over a range of times (including June and then monthly, from September to January) at a target rate of 200 kg N ha–1. Nitrogen leaching over the four years ranged from 0 to >50% of applied slurry N, with the largest losses occurring following applications in the September to November period. The use of a nitrification inhibitor with slurry applied in November failed to provide consistent reduction in nitrate leaching.
A strategy to reduce the risk of N leaching from manures applied to freely draining grassland soils must take account of the characteristics of the manure, in particular its N content, the application rate and the amount of excess rainfall following application. The experimental results suggest that slurry applications to freely draining grassland, in September, October and November should generally be avoided, the rationale for this being dependent on the amount of excess rainfall subsequent to application. Farmyard manure represents a lower risk and does not justify the restrictions on application timing that appear to be necessary with slurry.  相似文献   

16.

Purpose  

Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO3) leaching, and nitrous oxide (N2O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3 leaching and N2O emissions in vegetable production systems.  相似文献   

17.
Xiao  Hongdong  Fan  Xin  Sun  Haijun  Yu  Min  Shi  Weiming  Singh  Bhupinder Pal  A  Dan  Wang  Hailong 《Journal of Soils and Sediments》2021,21(6):2253-2261
Journal of Soils and Sediments - Significant leaching losses of nitrogen (N) and phosphorus (P) from soil occurred during the summer fallow period of intensive plastic-shed vegetable production...  相似文献   

18.
Abstract. Nitrate leaching in lysimeters containing a tropical sandy agricultural soil was studied over two summers with maize ( Zea mays L.) and one winter season with wheat ( Triticum aestivum L.). The treatments included two moisture regimes and two nitrogen sources, cattle manure and inorganic fertilizer-N (either ammonium nitrate or ammonium sulphate) applied at 100 kg N/ha in the summers. Neither manure nor fertilizer-N was applied in the intervening winter. Leachate volume from the manured lysimeters was mostly larger than from fertilized ones because of poor growth and less evapotranspiration. The largest seasonal nitrate loads (17–39 kg N/ha) were obtained in the wet summer immediately after installation of the lysimeters. Nitrate loads in winter (3.7–18.6 kg N/ha) were larger than those obtained in fertilized (0.6 and 9.3 kg N/ha) and manured (0.3 and 3.0 kg N/ha) lysimeters for the two moisture regimes in the second summer. The drier conditions in the second summer decreased N-mineralization and leaching of manure.  相似文献   

19.
Abstract. Losses of nitrogen in the tile drainflow from a clay soil (Evesham series) under grazed grassland were monitored during the 1982/83 and 1983/84 drainflow seasons. In 1982/83, 40% of the discharge had a NO3 concentration > 11.3 mgNl−1, while in 1983/84 concentrations were always > 20 mgNl−1. Total N lost by leaching was 17.5 and 48.7 kg ha−1 in 1982/83 and 1983/84 respectively, which was equivalent to 9 and 43% of the fertilizer applied. The marked difference in N losses for the two seasons was attributed to differences in the quantity and timing of N fertilizer applications, the dryness of the preceding summer and the duration and density of stocking.  相似文献   

20.
Nitrate leaching as affected by long-term N fertilization on a coarse sand   总被引:17,自引:0,他引:17  
Abstract. A field experiment on a coarse sand (1987–92) was conducted with spring barley ( Hordeum vulgare L.), in order to evaluate the effects of increasing N fertilization on nitrate leaching under temperate coastal climate conditions. The N fertilizer levels were 60 and 120 kg N/ha. The experiment was conducted on a 19-year old permanent field trial with continuous spring barley, initiated in 1968, and included treatments with ploughing in autumn or spring, with or without perennial ryegrass ( Lolium perenne L.) as a catch crop undersown in spring. Prior to 1987, the low and high levels of N fertilizer were 70 and 150 kg N/ha, respectively. To calculate nitrate leaching, soil water samples were taken from a depth of 0.8 m using ceramic cups. The average annual nitrate leaching from plots with 60 and 120 kg N/ha was 38 and 52 kg N/ha/y, respectively. The increased leaching associated with increasing fertilizer application was not caused by inorganic N in the soil at harvest, but rather by greater mineralization, mainly in autumn. Growing of a catch crop was relatively more efficient for reducing nitrate leaching than a long-term low fertilizer application. A 50% reduction in N application decreased average yield by 26%, while nitrate leaching decreased by 27%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号