首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential extractions were used on soils from a long-term experiment treated with either metal-contaminated sewage sludge or inorganic fertilizers between 1942 and 1961. The four extracts employed were CaCl2, NaOH, EDTA and aqua regia. These showed that large increases in the proportions of Pb, Cu, Zn, Ni and Cd in at least one of the first three fractions occurred during the first 10 years of sewage sludge additions. Cr always remained predominantly in the aqua regia-soluble fraction. For 30 years after this, including a period of more than 20 years after application of sludges to the field had ceased, there was very little change in the percentage of each metal extracted by each reagent. Although the ‘residual’ (aqua regia-soluble) and EDTA fractions usually contained the largest amounts of metals in either sludge- or fertilizer-treated soils, there were clear differences between the metals: Pb represented the largest fraction of any metal extracted by EDTA, Cu of any metal extracted by NaOH and Cd of any metal extracted by CaCl2. The same extractions were made of the sewage sludges that were applied to the field, and the distributions of the metals differed from those found in the treated soils. It was particularly apparent that more Pb and Cu was present as the ‘residual’ (aqua regia) fraction in sludges than in the soils.  相似文献   

2.
Green waste compost, peat, coir and wood bark were applied to metal-contaminated mine waste at the rates of 1%, 10% and 20% on dry weight basis, and perennial ryegrass grown over a period of 6 weeks. Addition of amendments led to increased biomass yield in all soils when compared with the non-amended soil. EDTA extractable Pb, Cu and Zn was significantly reduced in amended soil, while leaf and root metal concentrations were also significantly reduced by the application of amendments, especially at applied rates of 10% and 20%. Coir, green waste compost and wood bark stood out as amendments which were consistent in reducing soil extractable and plant tissue Pb, Cu and Zn; while peat rates above 10% enhanced solubility of Cu and Zn because of a lowering of the soil pH.  相似文献   

3.
Sandy‐textured Mediterranean soils are invariably depleted in organic matter and supply only small amounts of N to crops. To compensate for these deficiencies, we tested the N supply from six organic wastes applied to a Cambic Arenosol in pots growing ryegrass. The results showed that the behaviour of the wastes in supplying N to a ryegrass crop grown in this soil can be predicted by observing their performance in laboratory aerobic incubations. The N made available during these incubations fitted well to a one‐pool kinetic model.  相似文献   

4.
The objective of this research was to study the effect of water deficit on soil heavy metal availability and metal uptake by ryegrass (Lolium multiflorum Lam.) plants grown in a soil amended with a high dose of rural sewage sludge. Three fertility treatments were applied: sewage sludge (SS), mineral fertilizer (M), and control (C); unamended). The levels of irrigation were: well-watered (W) and water deficit (D). Microbial respiration decreased the total organic C (TOC) in sludge-treated soils, but this did not enhance soil DTPA-extractable heavy metal concentrations. Indeed, Zn, Cu, Mn and Ni availability decreased during the experiment. C- and M-treated soils showed either no changes or increases of some trace element concentrations during the incubation. In the plant experiment, ryegrass dry matter (DM) yield, relative water content (RWC) and leaf water potential (w) decreased in drought conditions. Sludge addition increased metal concentrations in plants. However, in some instances, SS-treated plants showed either similar or lower transfer coefficient (Tc) values than did plants in the C and M treatments. Water deficit decreased the concentration and the Tc of some metals in roots of M and SS plants. Results indicate that sludge-borne heavy metals were maintained in chemical forms of low availability. The lower metal uptake by SS and M plants under dry conditions cannot be attributed to a lower availability of these elements in soil.  相似文献   

5.
Abstract

Methods of soil decomposition for determination of heavy metal total content were considered. Two saline soils (chloride and sulphate solonchak solonetz) and one rich in organic matter were uzed for investigation. It has been established that decomposition by using HF‐HCl with a preliminary ignition at 500°C is a very suitable method. The type of the studied soils and the results obtained allow for this method to be recommended for decomposition of various soils.

On the basis of experiments with modelled soils it has been proved that possibilities for heavy metal losses on ignition are created when NaCl content and the percentage of weakly bound heavy metals (water‐soluble, exchangeable, etc.) are high. Under the conditions of the experiment (acid soils ‐ pH 4.3 and 5.0) losses of Zn and Pb but not of Cu have been incurred. Although these cases are not typical, this requires the applicability of the method for such particular occasions to be checked.  相似文献   

6.
Combination effects of heavy metals and fluoranthene on soil bacteria   总被引:16,自引:0,他引:16  
The effects of (1) Cd, Cu, Zn, and fluoranthene (FLA), separately applied, and (2) combinations of one of these heavy metals with FLA on the growth of bacteria were studied in agar plate experiments. The bacteria were extracted from A horizons of a Eutric Regosol and a Calcic Chernozem. Significant reductions of bacterial counts were observed for both soils at concentrations > 1.0 mg Cd l–1, 0.5 mg Cu l–1, and 0.5 mg Zn l–1, respectively. Additions of FLA up to 100 mg l–1 did not result in increasing reductions of bacterial growth in the Regosol. Only 0.5, 2, and 100 mg FLA l–1 caused significant reductions of 22–27%. Bacterial counts were not affected by 0.2 mg FLA l–1. Low concentrations of heavy metals which were not affective when added separately were found to reduce bacterial growth when applied in combination with 0.2 mg FLA l–1. At higher levels of heavy metals up to 2.5 mg l–1, addition of FLA also increased the toxicity of the metals. It is assumed that the enhancement of toxicity by FLA is due to an alteration of the permeability of bacterial cell membranes. Received: 19 July 1996  相似文献   

7.
A 3-year field experiment on a calcareous Fluventic Xerochrept planted with corn (Zea mays L.) was carried out to evaluate the effects of amending the soil with high and low rates of composted municipal waste on soil enzyme activities (alkaline phosphomonoesterase, phosphodiesterase, arylsulphatase, dehydrogenase, and l-asparaginase). These enzyme activities all increased when compost was added at rates of up to 90 t ha-1, and the phosphatases continued to show a linear increase with compost rates of up to 270 t ha-1. The addition of mineral fertilizer increased enzyme activities in unamended soil, and masked the stimulating effect of compost on the amended soils. Heavy metals did not affect soil enzyme activities up to a compost addition of at least three times the amount specified by Italian law.  相似文献   

8.
The efficacy of three abundant organic wastes: poultry manure (PM), cattle slurry (CS) and sewage sludge (SS) for the reclamation of burnt soils was evaluated. A forest soil, previously furnace-heated in order to simulate exposure to a high-intensity wildfire, was labelled with nitrogen-15 (15N) to evaluate the contribution of N derived from the organic waste to the burnt soil and vegetation. Four treatments were performed with the heated 15N-labelled soil: an unamended control soil (S) and three waste amended soils (S+PM, S+CS and S+SS) at a dose waste of 167mg total N kg–1 soil. Lolium perenne was grown in all the pots for 3 months. In each treatment the phytomass produced and its N content decreased significantly in the following order of treatments: S+PM S+CS > S+SS S. The percentage of plant N derived from the waste was similar in the S+PM (22.8%) and S+CS (24.0%) treatments, but significantly lower in the S+SS treatment (16.5%). At the end of the 3 month experimental period, the available N reserves (phytomass N+soil inorganic N) in the control soil accounted for 51.5–71.5% of those in the S+PM, S+CS and S+SS treatments, whereas the yield of the plants was only 13.4–29.8% of that in the manured soils. These results demonstrated the importance of the addition of organic wastes, particularly PM, for the recovery of the vegetation cover and for the stabilization of the soil ash layer. They also showed that the level of N was not the main controlling factor of plant growth in the control soil, which, moreover, did not show evidence of a shortage of macronutrients, i.e. phosphorus, potassium, calcium or magnesium. It is hypothesized that, as occurs in heat-sterilized soils, phytomass production in the control-heated soil could have been inhibited by the heat-induced production of phytotoxic compounds, their negative effects being microbially or chemically suppressed by the addition of organic wastes. Received: 3 March 1997  相似文献   

9.
Heavy metals and persistent organic pollutants from atmospheric deposition and from fertilizer and pesticide applications are important hazardous substances in forest soils. Data are presented showing that these substances preferentially accumulate in the upper humic horizons of the soils. Another group of substances to be considered in relation to the chemical time bomb concept are the components of humus and soil minerals, mainly nitrogen and metals, which May, be mobilized and thus threaten groundwater quality. Forestry management practices such as thinning, cropping, fertilization and liming are discussed as potential triggers for the mobilization of harmful substances. in this context, The turnover (build-up and mineralization) of organic matter plays a crucial part. It will be shown, however, that even more danger arises from soil acidification induced by the atmospheric deposition of acidifying pollutants such as sulphates and nitrates.  相似文献   

10.
11.
Abstract

Alum shale and till soils overlying alum shale bedrock were analysed for aqua regia and NH4OAc/EDTA extractable Pb, Cu, Zn, Ni, Mn and Cd. The means of these determinations were compared with those of Norwegian, Finnish and Swedish non-alum shale soils. Alum shale soils seemed to contain higher amounts of both total and easily extractable Cu, Zn, Ni and Cd. Total Pb content also seemed to be higher in the alum shale soils. The relative availability of Cd, Ni and Mn, expressed as the ratio of NH4OAc/EDTA to aqua regia extractable, was found to be greater than that of Pb, Cu and Zn in the alum shale and till soils.  相似文献   

12.
 Composts made from biosolids and municipal solid wastes contain heavy metals which may be exported outside soil systems by plants, animals and surface and subsurface waters after the compost has been added to soils. Chemical distributions of Cu, Zn, Cr, Pb, Ni and Co were determined by eight sequential extractions of co-composted materials sampled on days 0, 13, 27 and 41. The concentrations of residual Zn, Cr, Cu and Pb increased by 145, 124, 73.6 and 26.3% during the composting period, respectively, whereas the concentration of residual Ni remained relatively constant and that of Co decreased by 60% over the same period. These results show that co-composting contaminated residues substantially reduces the extractability and exchangeability of four out of six heavy metals, suggesting that the risks of entering the food chain and contaminating crops, animals and water reserves would be equally reduced. Fourier-transform infrared spectra showed that heavy metals in the compost are bonded to COO- groups of the organic matter. Received: 20 March 1998  相似文献   

13.
Chemical fixation of NH3 to soil organic matter was studied in two Swedish soils with different contents of organic matter: a clay soil with 2.3% C and an organic soil with 36.6% C. 15N‐labelled urea was applied at different rates to both sterilized and non‐sterilized soils. After 10 days, the soils were extracted and washed with K2SO4 and determined for total N and atom% 15N excess. Urea N was recovered as non‐extractable N in sterilized soil corresponding to 9.7% of supplied l5N‐labelled urea in the organic soil and 2.2% in the clay soil. Since no biological immobilization is thought to occur in the sterile soil, this non‐extractable N is suggested to be chemically fixed to soil organic matter. Owing to urea hydrolysis in the clay soil, pH increased from 6.3 to 9.3 and in the organic soil from 5.7 to 6.9 and 8.8, respectively, at the low and high urea supply.  相似文献   

14.
Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.  相似文献   

15.
How composting affects heavy metal content is largely unknown. Accordingly, we investigate the total content of six heavy metals, Cd/Zn ratio and the Zn-equiv, the relative availability and fractionation study to assess the suitability of compost derived out of those for environmental concerns. During composting, total metal content increased but their RA decreased. As a result of composting bioavailable form of metals also decreased. High significant correlations between different forms of heavy metals content and degree of humification were found for all the elements. Composting increases humic acid content than fulvic acid. This transformation is mainly responsible to serve as binding agent for metal thereby moderating the rapid metal mobilization.  相似文献   

16.
Soil biochemical properties were measured annually between 1995 and 1999 in soil from an 8-ha site that had received over 1,000 wet tonnes ha–1 undigested sewage sludge, 1–4 years earlier. Basal respiration generally declined with time and was usually greatest in the untreated control area. This trend was attributed to a similar trend in soil moisture content. In contrast, microbial biomass C increased with time and also generally increased with sludge treatment age. Microbial biomass C, and to a lesser extent sulphatase activity, accurately predicted the order of sludge application to the site. This was perceived as a function of time since tillage and pasture establishment, with activities increasing in parallel to the build up of C residues in the soil, and not an effect of sludge or its composition. Except immediately after sludge application, there was no effect on N mineralisation and nitrification. None of the biochemical properties was strongly correlated with heavy metal concentrations. Our results suggest that there was little effect on soil biochemical properties, either adverse or beneficial, of adding raw sewage sludge to this site. Although a companion study showed considerable mobility and plant uptake of heavy metals, this difference could mainly be attributed to a different sampling strategy and the effects of intensive liming of the site.  相似文献   

17.
The bioavailability of heavy metals (Cd, Zn, Pb, Cu) and the abundance of arbuscular mycorrhiza (AM) were studied in two agricultural fields close to a Pb-Zn smelter and three fields outside the pollution zone all cultivated with maize (Zea mays L.). Metal extractability with ethylenediaminetetraacetic acid (EDTA)-NH4OAc and Ca(NO3)2, plant metal uptake, and mycorrhizal parameters (spore number, root colonization) were assessed at two growth stages (six-leaf and maturity). Despite regular liming, the availability of Cd, Zn, and Pb was markedly higher in the two metal-polluted fields than in the three uncontaminated fields. However, the AM abundance was not correlated with metal availability. Root colonization and spore numbers in the metal polluted fields were relatively high, though at plant maturity the former was significantly lower than in one of the uncontaminated fields. The very low AM abundance in the two other unpolluted fields was related to other factors, particular soil and plant P status and soil pH. AM root colonization did not substantially prevent plant metal accumulation, since the metal concentrations in maize grown on the polluted fields strongly exceeded normal values, and for Cd and Pb reached the limits of toxicity for animal feed.  相似文献   

18.
 Particle-size fractionation of a heavy metal polluted soil was performed to study the influence of environmental pollution on microbial community structure, microbial biomass, microbial residues and enzyme activities in microhabitats of a Calcaric Phaeocem. In 1987, the soil was experimentally contaminated with four heavy metal loads: (1) uncontaminated controls; (2) light (300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd); (3) medium; and (4) heavy pollution (two- and threefold the light load, respectively). After 10 years of exposure, the highest concentrations of microbial ninhydrin-reactive nitrogen were found in the clay (2–0.1 μm) and silt fractions (63–2 μm), and the lowest were found in the coarse sand fraction (2,000–250 μm). The phospholipid fatty acid analyses (PLFA) and denaturing gradient gel electrophoresis (DGGE) separation of 16S rRNA gene fragments revealed that the microbial biomass within the clay fraction was predominantly due to soil bacteria. In contrast, a high percentage of fungal-derived PLFA 18 : 2ω6 was found in the coarse sand fraction. Bacterial residues such as muramic acid accumulated in the finer fractions in relation to fungal residues. The fractions also differed with respect to substrate utilization: Urease was located mainly in the <2 μm fraction, alkaline phosphatase and arylsulfatase in the 2–63 μm fraction, and xylanase activity was equally distributed in all fractions. Heavy metal pollution significantly decreased the concentration of ninhydrin-reactive nitrogen of soil microorganisms in the silt and clay fraction and thus in the bulk soil. Soil enzyme activity was reduced significantly in all fractions subjected to heavy metal pollution in the order arylsulfatase >phosphatase >urease >xylanase. Heavy metal pollution did not markedly change the similarity pattern of the DGGE profiles and amino sugar concentrations. Therefore, microbial biomass and enzyme activities seem to be more sensitive than 16S rRNA gene fragments and microbial amino-sugar-N to heavy metal treatment. Received: 21 January 2000  相似文献   

19.
The abandonment of cultivated wetland soil increased the contents of light fraction organic matter (LFOM), heavy fraction organic matter (HFOM) and soil organic matter (SOM). The LFOM and HFOM content increased to 13.3 g kg−1 and 62.4 g kg−1 after 5 years whereas they were 8.4 and 47.9 g kg−1 after 9 years of cropping, respectively. Fourteen years after abandonment, HFOM content increased to 104.3 g kg−1. LFOM was positively correlated with HFOM (p < 0.001). A Langmuir equation was used to calculate the highest HFOM value. The value for the natural wetland soil was closed to this theoretical value (140.8 g kg−1). After 14 years of abandonment, the HFOM maximum (HFOMMax) value was lower than the equilibrium value suggesting that a further increase in HFOM can occur after abandonment. Assuming a linear accumulation (3.87 Mg C ha−1yr−1), it would take approximately 24 years after the abandonment to reach the HFOMMax value.  相似文献   

20.
The aim of this study was to determine the effects of heavy metal pollution on the structure and functioning of detritivore soil communities that consist of isopods, millipedes and earthworms, in 15 heavily polluted flood plain soils, located in the delta area of the rivers Rhine and Meuse, in the Netherlands. The 15 study sites represent a gradient in Zn, Cu and Cd concentrations. The structural attributes of the detritivore community, which were assessed, were the species richness and densities in the field sites. The functioning of the detritivore community was studied by determining organic matter decomposition using litter bags and feeding activity with the bait-lamina method. Concentrations of Cd, Cu and Zn were measured in soil, pore water and 0.01 M CaCl2 extracts of the soil, in adult earthworms and plant leaves. Results show that metal pollution is not a dominating factor determining the species richness and densities of the selected detritivore groups, although the biomass of the earthworm Lumbricus rubellus was positively and significantly correlated to Zn concentrations in pore water and 0.01 M CaCl2 extracts. Litter decomposition was significantly and positively correlated to detritivore biomass and 0.01 M CaCl2 extractable Cd concentrations in soil and negatively to pH-CaCl2, although the range of pH values was very small. It can be concluded that in spite of high metal levels in the soil, bioavailable concentrations are too low to result in clear negative effects on the structure and functioning of detritivores in the Biesbosch, the Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号