首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西北风积沙区采煤扰动下土壤侵蚀与养分演变特征   总被引:3,自引:2,他引:1  
为更好地理解西北风积沙矿区生态环境演变规律,以神东哈拉沟与上湾矿区为例,利用~(137)Cs示踪法分析了未采区、自恢复沉陷区(1、2、4、8 a沉陷区)与植被修复区(13 a沉陷区)的土壤侵蚀与养分特征,研究了矿区土壤侵蚀与养分的演变规律。结果表明:采煤扰动可以导致未采区土壤侵蚀强度增大与有机碳、微生物量碳、全氮、全磷、碱解氮养分明显损失。开采沉陷后,沉陷区土壤侵蚀强度随着时间的推移呈现出先增加后降低的趋势;其中,地表沉陷后的最初2 a是土壤侵蚀急剧增大的时段。采煤扰动下,土壤有机碳、微生物量碳、全氮、全磷、碱解氮养分的演变规律与土壤侵蚀演变密切相关。植被修复可以有效降低沉陷区土壤侵蚀强度与提高土壤养分含量。西北风积沙区采煤沉陷地表的生态恢复应该及时开展地表沉陷后的早起侵蚀防治,兼顾考虑植被修复与土壤微生物联合修复,以此促进土壤、植被正向演替。  相似文献   

2.
Lack of baseline data on soil fertility status for most semiarid areas to a very large extent hampers the success of land degradation monitoring. However, this can be overcome by adopting an inferential approach which presupposes that soils of an area of uniform geologic, geomorphic and climatic characteristics differ mainly because of the uses to which they are put. On this basis, soil conditions of a long-standing vegetation community can be used to assess the extent of soil changes resulting from land-use practices, provided that both the vegetation community and the land-use plots are located in an area having the uniform environmental parameters noted above. This approach was adopted in the Kabomo area of Nigeria, a typical semiarid tropical ecosystem, to monitor the extent of soil degradation resulting from 20 years (1972–92) of arable farming, livestock ranching and legume grass farming. Using a systematic sampling procedure, topsoil (0–15 cm) and subsoil (20–30 cm) samples were collected from both the long-standing vegetation community plot (over 80 years old) which was chosen to serve as the control, and the three land-use plots. The collected samples were then analysed for texture, bulk density, water content, water stable aggregates greater than 0·50 mm, organic matter, pH, cation exchange capacity (CEC), total nitrogen, available phosphorus and exchangeable bases. The mean value of every property for each plot was then divided by the mean value of the same property for the control plot in order to assess the extent of change (i.e. extent of degradation) in the property. The Student's t-test was then used to assess the significance of such a change. The results obtained revealed that, in general, the mean values of the various soil properties, with the exception of sand and bulk density, have declined by between 3 per cent and 72 per cent, and in most cases the declines are statistically significant. Sand and bulk density, on the other hand, show some increases of between 6 per cent and 78 per cent, though only the increase in respect of the sand fractions are statistically significant. Similarly, it was observed that the extent of degradation was much greater under the arable land and least under the livestock ranching plot. The potential causes of these trends were discussed, while suggestions were offered on how best to utilize this approach in carrying out effective monitoring of land resources in the semiarid tropics. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Overgrazing is one of the main causes of desertification in the semiarid Horqin sandy grassland of northern China. Excluding grazing livestock is considered as an alternative to restore vegetation in degraded sandy grassland in this region. However, few data are available concerning the impacts of continuous grazing and livestock exclusion on soil properties. In this paper, characteristics of vegetation and soil properties under continuous grazing and exclusion of livestock for 5 and 10 years were examined in representative degraded sandy grassland. Continuous grazing resulted in a considerable decrease in ground cover, which accelerates soil erosion by wind, leading to a further coarseness in surface soil, loss of soil organic C and N, and a decrease in soil biological properties. The grassland under continuous grazing is in the stage of very strong degradation. Excluding livestock grazing enhances vegetation recovery, litter accumulation, and development of annual and perennial grasses. Soil organic C and total N concentrations, soil biological properties including some enzyme activities and basal soil respiration improved following 10-year exclusion of livestock, suggesting that degradation of the grassland is being reversed. The results suggest that excluding grazing livestock on the desertified sandy grassland in the erosion-prone Horqin region has a great potential to restore soil fertility, sequester soil organic carbon and improve biological activity. Soil restoration is a slow process although the vegetation can recover rapidly after removal of livestock. A viable option for sandy grassland management should be to adopt proper exclosure in a rotation grazing system in the initial stage of grassland degradation.  相似文献   

4.
Soils found in semiarid areas of the Mediterranean Basin are particularly prone to degradation due to adverse climatic conditions with annual rainfall <300 mm and high temperatures being responsible for the scant vegetal growth and the consequent lack of organic matter. A three-year field experiment was conducted to test the potential of two organic amendments (sludge and compost) to improve soil quality and plant growth in a semiarid degraded Mediterranean ecosystem. Since little is known about N dynamics in such assisted ecosystems, we investigated the effects of this practice on key processes of the global N cycle. Besides soil chemical and biological parameters and vegetation cover, we measured absolute and specific potential nitrification and denitrification rates and quantified the size of the ammonia oxidising and denitrifying bacterial populations via quantitative PCR (amoA and nirS genes). At the end of the experiment soil fertility, microbial activity and plant growth had improved in treated plots. Amendments increased the amount of ammonia oxidisers and denitrifiers in soil, but the relative proportion of these groups varied in relation to the total microbial community, being higher in the case of ammonia oxidisers but not in the case of denitrifiers. As a consequence, significantly higher potential nitrification and denitrification rates were measured on a global basis in amended soils. Yet specific activities (potential rate/gene copy numbers) were lower for ammonia oxidisers in amended soils and for denitrifiers in sludge treated soils than those observed in control plots. Organic amendments influenced resource availability, the size and the activity patterns of microbial populations involved in long-term N dynamics. Therefore N cycling processes may play a key role to assist sustainable restoration practices in semiarid degraded areas.  相似文献   

5.
Wind erosion and sand storms are common phenomena in semiarid steppes of northern China and could have important impact on soil nutrient balances. Vegetation coverage is one of the key factors influencing wind erosion and aeolian dust accumulation. We conducted a field experiment to investigate the effects of vegetation coverage on airborne dust accumulation and evaluated effects of dust input on the contribution of nutrients to vegetation-mulched fields. Five vegetation coverage treatments (15%, 35%, 55%, 75% and 95%) were constructed, with 0% coverage as a control. Vegetation coverage significantly affected dust accumulation in degenerated semiarid grasslands. The amounts of dust trapped by the increasing coverages were 1.7, 1.8, 2.0, 2.1 and 2.1 times of that by the control plot, respectively. The total accumulations reached a maximum of 2.5 g m−2 day−1 at 75% coverage and remained stable with further increasing vegetation coverage. The particles in the dust trapped by treatment without vegetation coverage were significantly coarser than those by treatments with vegetation. In addition, the dust trapped by treatments with vegetation contained more organic carbon, nitrogen and phosphorus content than that by the control plot. This finding indicates that areas with higher vegetation coverage can obtain more nutrients by trapping airborne dust in semiarid steppes.  相似文献   

6.
坡地开垦的径流泥沙响应   总被引:2,自引:0,他引:2  
Land use and land cover change is a key driver of environmental change. To investigate the runoff and erosion responses to frequent land use change on the steep lands in the Three Gorges area, China, a rainfall simulation experiment was conducted in plots randomly selected at a Sloping Land Conversion Program site with three soil surface conditions: existing vegetation cover, vegetation removal, and freshly hoed. Simulated rainfall was applied at intensities of 60 (low), 90 (medium), and 120 mm h 1 (high) in each plot. The results indicated that vegetation removal and hoeing significantly changed runoff generation. The proportion of subsurface runoff in the total runoff decreased from 30.3% to 6.2% after vegetation removal. In the hoed plots, the subsurface runoff comprised 29.1% of the total runoff under low-intensity rainfall simulation and the proportion rapidly decreased with increasing rainfall intensity. Vegetation removal and tillage also significantly increased soil erosion. The average soil erosion rates from the vegetation removal and hoed plots were 3.0 and 10.2 times larger than that in the existing vegetation cover plots, respectively. These identified that both the runoff generation mechanism and soil erosion changed as a consequence of altering land use on steep lands. Thus, conservation practices with maximum vegetation cover and minimum tillage should be used to reduce surface runoff and soil erosion on steep lands.  相似文献   

7.
消落带植被状况与水位消涨是影响土壤养分及其分布的重要因子。本文以三峡库区万州段消落带为研究地点,通过对人工和自然恢复样地沿海拔梯度对土壤进行取样和分析,揭示了不同恢复模式下消落带土壤养分及其空间分布特征。研究结果表明,植被恢复模式对土壤养分有显著影响,人工恢复样地消落带主要土壤养分含量总体高于自然恢复样地,显示人工恢复能有效促进土壤养分在植物群落中的积累;在库区反季节水位消涨的作用下,人工恢复地消落带土壤养分沿海拔梯度呈先增加后减少的空间分布格局,土壤养分含量在消落带中部(海拔165 m)达到最高值,而自然恢复地土壤有机质和全氮的空间分布则随海拔梯度增加而增加,以消落带上部(海拔175 m)的值最高。土壤养分的空间分布格局源自于不同海拔梯度的消落带受水位消涨扰动程度以及植被恢复状况的差异,植被恢复模式对土壤养分的空间分布仍有一定影响。今后应在消落带上部进一步引种适宜的乔灌木物种,不断提高消落带植被对土壤养分的固持能力。  相似文献   

8.
植被去除对侵蚀环境土壤有机质和养分的影响   总被引:1,自引:0,他引:1  
陈春良    鲍凯强  王梦莹    郑柯    邱莉萍  魏孝荣 《水土保持研究》2022,29(5):131-136
为探究侵蚀环境下植被对土壤性质的影响机制,在陕北黄土高原选择了3个小流域,在坡面和与之对应的沉积区布设2年的植被去除试验,分析了植被去除后侵蚀区和沉积区土壤有机质和养分的分布特征。结果表明:(1)土壤侵蚀—沉积作用显著影响土壤养分的分布,沉积区0—60 cm土层硝态氮、铵态氮、全磷和速效钾含量分别比侵蚀区高75.3%,25.1%,11.8%和27.0%。(2)植被对土壤有机质和养分的影响存在明显的地形差异。植被去除2年后,0—10 cm土层土壤有机质、铵态氮和速效钾含量在侵蚀区降低了1.75 g/kg,0.97 mg/kg,35.85 mg/kg,在沉积区降低了7.61 g/kg,1.47 mg/kg,90.74 mg/kg,硝态氮含量在侵蚀区增加了0.60 mg/kg,在沉积区降低了2.33 mg/kg。(3)植被去除后,沉积区土壤各指标间存在显著相关关系,而侵蚀区这种相互关系较弱。这些结果表明:植被去除对沉积区土壤有机质、速效钾的影响较大,对侵蚀区硝态氮、铵态氮的影响较大。研究结果加强了对侵蚀—沉积过程中土壤—植被相互作用的认识,为水土流失区土壤质量提升提供科学依据。  相似文献   

9.
One of the many contentious issues facing the appropriate and accurate assessment of land degradation is the varying emphasis placed on vegetation degradation and soil degradation processes. This has led to the compartmentalization of land degradation assessment methods, depending on the particular perspective adopted. The land degradation assessment method presented here attempts to take into account both vegetation and soil degradation. This methodology is applied to the southern part of the Monduli District of northeast Tanzania, an area typifying the so‐called ‘affected drylands’ of Africa. Three sets of land cover maps synchronized against long‐term rainfall data (1960s, 1991 and 1999) were used to assess land degradation in the area. Utilizing these three sets of land cover maps as a basis for change detection, it is possible to distinguish areas that experienced changes in vegetation due to rainfall variability from those areas that were subject to changes consequent upon anthropological factors. All areas that displayed overall depletion of natural and semi‐natural vegetation due to human factors were deemed to have undergone land degradation, whereas areas that experienced inter‐annual land cover changes due to rainfall variability were classified as experiencing cover change due to ecosystem dynamics. This method provides a complete and appropriate assessment of land degradation in the study area and can be used to improve degradation assessment in other semiarid areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Soil organic carbon (SOC) content depends significantly upon changes in land use and vegetation cover. This study aimed to examine the redistribution of whole soil OC, water-soluble OC (WSOC), and different density-separated OC fractions in soil profiles of 0–100 cm under different land uses and to elaborate the mechanism of C sequestration in response to the land use change. The land use types include maize plots with or without chemical fertilizer application (i.e., Maize-nitrogen, phosphorus, and potassium (NPK) and Maize-NF plots), plots with vegetation removed (No Vegetation), plots with grass (Grass), and alfalfa plant (Alfalfa). These plots used to be maize cropping system with NPK fertilizer for many years before 2003. Significant difference in SOC content generally occurred in soil layers of 0–40 cm among the different plots after 11 years of land-use change. Long-term continuous maize planting decreased SOC content; the significant SOC decrease occurred in Maize plot in the range of 9.3–23.4% for different soil layers compared with the initial soil sampled in 2003. In addition, SOC in Maize plot decreased by 3.6% and 8.5% at top two soil layers, respectively, in comparison with No Vegetation plot. The similar reduction of OC was observed in heavy OC fractions. The calculated sensitivity index for OC decreased in the order of light fraction > water-soluble fraction > the whole soil > heavy fraction. Therefore, the young and labile carbon fractions are much sensitive to land use change relative to the old and recalcitrant carbon fractions. This study indicated that land use changes led to a redistribution of SOC in soil profile, particularly at top soil layers, and conversion from arable land to natural grass cover or nitrogen-fixation plant cultivation such as alfalfa led to the enrichment of SOC at different depths of soil profile.  相似文献   

11.
The assessment of grassland degradation due to overgrazing is a global challenge in semiarid environments. In particular, investigations of beginning steppe degradation after a change or intensification of the land use are needed in order to detect and adjust detrimental land‐use management rapidly and thus prevent severe damages in these sensitive ecosystems. A controlled‐grazing experiment was established in Inner Mongolia (China) in 2005 that included ungrazed (UG) and heavily grazed plots with grazing intensities of 4.5 (HG4.5) and 7.5 (HG7.5) sheep per hectare. Several soil and vegetation parameters were investigated at all sites before the start of the experiment. Topsoil samples were analyzed for soil organic C (SOC), total N (Ntot), total S (Stot), and bulk density (BD). As vegetation parameters, aboveground net primary productivity (ANPP), tiller density (TD), and leaf‐area index (LAI) were determined. After 3 y of the grazing experiment, BD increased and SOC, Ntot, Stot, ANPP, and LAI significantly decreased with increasing grazing intensity. These sensitive parameters can be regarded as early‐warning indicators for degradation of semiarid grasslands. Vegetation parameters were, however, more sensitive not only to grazing but also to temporal variation of precipitation between 2006 and 2008. Contrary, soil parameters were primarily affected by grazing and resistant against climatic variations. The assessment of starting conditions in the study area and the application of defined grazing intensities is essential for the investigation of short‐term degradation in semiarid environments.  相似文献   

12.
选择较合理的植被指标,对提高植被水土保持效益评价精度具有重要理论与现实意义。本研究基于福建省长汀县河田镇12个土壤侵蚀试验小区2007年和2008年2 a的降雨、径流、泥沙数据及各小区的植被叶面积指数(LAI)、植被覆盖度(VFC)资料,利用对比与统计分析方法,研究了2种植被覆盖类型(纯马尾松林、马尾松林草)和不同覆盖度(80%、60%、45%、30%、15%和5%)的红壤水土流失特点,探讨了LAI与VFC定量表征水土流失关系的稳定性和可靠性。结果表明,与裸地小区比较,马尾松纯林覆盖一定程度上降低了土壤侵蚀模数,对径流的减少作用并不明显;而马尾松林草覆盖可显著减少25%左右的径流,土壤侵蚀模数减少也在90%以上,林草结合的植被覆盖结构具有更强的水土保持功能。以LAI表征2种植被覆盖类型的土壤侵蚀模数,均能达到显著水平(p0.05);而以VFC来表征土壤侵蚀模数,仅马尾松林草覆盖类型达到了显著水平。选择LAI表征土壤侵蚀模数来评价植被水土保持效益,将更为稳定和可靠。  相似文献   

13.
Marisma, one of the largest salt-marsh alluvial areas in SW Spain, has been reclaimed since 1970 by artificial drainage and amendment with phosphogypsum (PG) so as to reduce Na+ saturation. Within the reclaimed area, two 250- × 20-m plots were treated as follows: (1) amendment with 25 Mg/ha of PG every 2 to 3 years between 1979 and 2003 (plot PY); (2) like PY but PG treatment stopped after 1997 (plot DR). A contiguous virgin Marisma salt-marsh plot (MV), neither drained nor amended, was the control. In MV, soil microbial biomass C, most enzyme activities and total organic C content were much greater than in PY and DR soils, despite the salinity stress. The decrease in soil organic matter content in PY and DR soils was likely due to cotton-cropping practices, which favoured the organic C mineralisation and nutrients removal by crops. Microbial activity of MV soil, probably stimulated by the rhizodepositions of the natural vegetation, did not suffer from the osmotic effect due to the raising of soil solution ionic strength. Microbial quotient could be ranked as MV > PY > DR, whereas the metabolic quotient had an opposite trend. Thus, both quotients suggested that the interruption of PG amendment was not favouring microbial activity. Principal component analysis clearly identified the chemical and biochemical soil properties mostly affected by the reclamation and also indicated the longer PG amendment in PY plot. Stepwise discriminant analysis identified two physiologically different types of soil microflora, one less active present in the MV virgin soil and another more active present in the reclaimed PY and DR soils.  相似文献   

14.
A stable plant cover is essential in the semi-arid soils of the Mediterranean area to maintain their fertility and functionality. In a semi-arid area, we have studied abundance, structure, and presence of active species of fungal communities of a devegetated soil (disturbed soil) and vegetated soil (undisturbed soil). Disturbed soil was covered by small spontaneous vegetation (5–10%) compared to undisturbed soils (70%), and this decreased the content of the total organic C, microbial biomass, microbial activity (adenosine triphosphate), and fungal counts. The composition and activities of fungal communities were also investigated by direct extraction of DNA and RNA from soil. Denaturing gradient gel electrophoresis analysis of 18S ribosomal DNA and 18S ribosomal RNA profiles indicated that total and active fungal communities were changed after vegetation removal.  相似文献   

15.
植物是影响土壤有机碳含量和土壤团聚体稳定性的重要因素。选取华南典型花岗岩侵蚀区荒草地、桉树林、湿地松林和木荷林4种植被类型径流小区的土壤为研究对象,分析测定不同坡位、不同土层深度的土壤有机碳特性和团聚体稳定性等指标,评价不同植被类型对土壤养分的分布特性以及团聚体稳定性差异,明确花岗岩侵蚀退化区较为理想的生态恢复措施,旨在为合理利用土壤、重建坡面植被和改善土壤结构提供科学依据。结果表明:土壤总有机碳(TOC)、全氮(TN)和溶解性有机碳(DOC)含量随土层加深逐渐降低,而林地小区土壤碳氮比(C/N)则相反,荒草地碳氮元素的坡面变异系数(CV)显著高于其他3种林地,其中桉树林地TOC、TN、DOC和C/N的坡面分布的变异系数较荒草地分别降低40%,56.18%,68.5%和25.81%;湿地松林地TOC、TN、DOC和C/N的坡面分布的变异系数较荒草地分别降低62.73%,33.71%,46.46%,58.06%;木荷林地TOC、TN、DOC和C/N的坡面分布的变异系数较荒草地分别降低41.82%,38.2%,51.18%,48.39%,表明林地较荒草地更有利于土壤碳氮在坡面的均质化和有机质的积累。荒草地和木荷林地0.25 mm粒径以上的团聚体在上、中坡位的质量分数显著高于其他植被类型,而林下植被生物量较高的木荷林地的平均质量直径(MWD)和几何平均直径(GMD)显著高于其他植被类型。其中木荷小区水稳性团聚体平均质量直径(MWD)较荒草地、桉树和湿地松分别高20.10%,19.58%,23.20%;几何平均直径(GMD)较荒草地、桉树和湿地松分别高20.00%,19.54%,22.23%,表明在花岗岩侵蚀区林地空间结构较好的林草模式有利于土壤有机碳的积累和土壤结构的稳定。  相似文献   

16.
汶川地震生态治理区土壤种子库及其与地上植被的关系   总被引:1,自引:1,他引:1  
为了比较地震灾区不同气候类型植被恢复区土壤种子库时空分布特征,采用野外调查取样和室内试验相结合的方法,研究了四川省汶川县威州镇和绵竹市汉旺镇4类生态治理区[干旱干暖河谷受损治理区(DHD)、干旱干暖河谷未受损区(DHU)、亚热带湿润季风气候受损治理区(HMD)、亚热带湿润季风气候未受损区(HMU)]土壤种子库的萌发动态、数量特征、物种组成、多样性特征及其与地上植被之间的关系。结果表明:未受损区具有2个萌发高峰期,受损治理区只有1个萌发高峰期,不同气候类型治理区土壤种子库在不同土壤深度表现出不同的萌发潜力;4类治理区土壤种子库平均密度为192~1 544粒·m?2,表层密度和平均密度均为未受损区受损治理区,干旱干暖河谷气候区亚热带湿润季风气候区;4类治理区共有50种植物萌发,草本植物占显著优势;HMU、HMD、DHU、DHD地上植被与土壤种子库物种组成的S?rensen相似性系数分别为26.23%、44.9%、30.77%、16.00%,Jaccard相似性系数分别为15.09%、28.95%、18.18%、9.09%;不同类型样地土壤种子库特有种和共有物种均表现出不同的生活型格局。基于以上分析结果,在灾区进行植被恢复时,应该考虑治理区的气候环境,因地制宜的进行人工引种和制定恢复措施。  相似文献   

17.
人工生物土壤结皮特性及其集雨潜力的研究   总被引:2,自引:0,他引:2  
为探讨在太行山半干旱区利用人工土壤生物结皮进行集雨的潜力和可行性,以自然生长的生物土壤结皮为种子,通过培育建立人工土壤生物结皮和生物结皮集雨,对人工土壤生物结皮建成后土壤物理性状、渗透率的变化及人工生物结皮集雨面的集流效率进行了研究。结果表明,人工土壤生物结皮与自然生长的生物结皮一样,可显著改变土壤的颗粒组成,使0~1 cm表层土壤的小颗粒物质含量增加、大颗粒物质减少,但对0~5 cm的土壤容重影响不显著。对土壤入渗速率的测定结果表明,人工培育的土壤生物结皮具有降低入渗速率的作用,与自然土壤相比,生物结皮的土壤初始入渗速率和稳定入渗速率分别下降59.1%和44.4%,达到稳定入渗的加水量也减少50.0%。人工营建的生物结皮集雨面的平均集雨效率达60.86%,与自然土面相比,提高23.0%。对集雨面效益分析表明,生物结皮集雨面不仅具有较高的集雨效果,且使用年限较长,并具有明显的减少地表径流沉积物含量,提高土壤抗蚀性的作用。综上结果可以看出,人工土壤生物结皮是一种极具潜力的绿色环保型集雨材料。  相似文献   

18.
Crop yields are primarily water-limited in dryland production systems in semiarid regions. This study was conducted in a catchment located in the “plateau central” of Burkina Faso to assess the impact of the space between stone lines on runoff and crop performance. The experimental design consisted of four plots in which stone lines were installed. The spacing between the lines was 100 m in the first plot, 50 m in the second, 33 m in the third, and 25 m in the last plot. The soil was a Ferric lixisol and the slope, which is characteristic of the area, was about 1–3%. Subplots placed at regular and fixed distances from the lines were used to monitor soil water content and crop yield. Runoff from all plots was measured using a water discharge recorder. It was found that 31% of rainfall was lost through runoff in plots without stone lines. The efficiency of stone lines in checking runoff and in improving soil water storage increased with reduced stone line spacing (runoff was reduced by an average of 5% on plots where the space between the lines was 33 m, but was reduced by 23% when the stone line spacing was 25 m). Soil water content decreased with increasing distance from the stone line. Sorghum (Sorghum bicolor (L.) Moench) performance was greatly affected by stone line and plant straw and grain yield were doubled in plots with stone lines compared with those of plots without stone lines. At an area of about 6 m from the stone lines (upslope), where organo-mineral sediments were collected, sorghum grain yields were 60% greater than that obtained at 19 m from stone lines. The stone line technique seems to be a sound option to mitigate water stress during dry spells.  相似文献   

19.
Vegetation patches in arid and semiarid areas are important in the regulation of surface hydrological processes. Canopy and ground covers developed in these fertility islands are a natural cushion against the impact energy of rainfall. Also, greater levels of organic matter improve the soil physicochemical properties, promoting infiltration and reducing runoff and soil erosion in comparison with the open spaces between them. During the 2006 rainy season, four USLE-type plots were installed around representative vegetation patches with predominant individual species of Huisache (Acacia sp), Mesquite (Prosopis sp), Prickly Pear or Nopal (Opuntia sp) and Cardon (Opuntia imbricata), to evaluate soil erosion and runoff, in semiarid Central Mexico. A comparative bare surface condition (Control) was also evaluated. Vegetative canopy and ground cover were computed using digital images. Selected soil parameters were determined. Soil erosion was different for the studied vegetation conditions, decreasing as canopy and ground cover increased. There were not significant differences in runoff and soil erosion between the Control and O.imbricata surfaces. Runoff was reduced by 87%, 87% and 98% and soil loss by 97%, 93%, and 99% for Acacia farnesiana, Prosopis laevigata and Opuntia sp, respectively, as compared to the Control. Soil surface physical conditions were different between the low vegetation cover conditions (Control and O.imbricata surfaces) and the greater vegetation cover conditions (A.farnesiana, P.laevigata and Opuntia sp), indicating a positive effect of vegetation patches on the regulation of surface hydrological processes.  相似文献   

20.
【目的】五爪金龙(Ipomoea cairica)、 南美蟛蜞菊(Wedelia trilobata)已入侵我国华南地区并造成严重危害。本文研究了五爪金龙入侵群落、 南美蟛蜞菊入侵群落与土著植物类芦(Neyraudia reynaudiana)群落内的土壤养分、 土壤微生物量、 土壤酶活性以及微生物群落代谢活性、 碳源利用特征与功能多样性的变化规律,探讨两种外来植物入侵对土壤生态系统的影响,为揭示其野外入侵机制提供科学依据。【方法】采用野外样方法于2010年1月在广州市东郊的火炉山森林公园设置五爪金龙入侵区、 南美蟛蜞菊入侵区和土著植物类芦区3类样地,测定土壤养分、 土壤酶活性、 土壤微生物量与微生物功能多样性。【结果】1)与土著植物区相比,五爪金龙入侵区土壤有机碳、 全氮、 全磷以及速效氮、 速效磷、 速效钾含量显著提高,增幅达到60.38%~230.01%; 南美蟛蜞菊入侵区土壤有机碳、 全氮、 速效氮、 速效磷含量亦显著提高,增幅达到50.54%~145.52%; 两种外来植物入侵区土壤C/N比显著降低,但对全钾含量的影响不明显。2)两种外来植物能够显著提高入侵地的土壤微生物量,其中五爪金龙、 南美蟛蜞菊入侵区的土壤微生物量碳(Cmic)、 氮(Nmic)、 磷(Pmic)含量分别比土著植物区增加105.00%~152.15%和61.51%~138.27%,但土壤微生物量在两个入侵区之间的差异不明显; 对于土壤微生物熵,南美蟛蜞菊入侵区的Cmic/Corg值显著高于土著植物区,但Nmic/Nt、 Pmic/Pt值3类样地之间差异不显著。3)两种外来植物入侵显著提高土壤脲酶、 蛋白酶、 蔗糖酶和纤维素酶的活性,其中南美蟛蜞菊入侵区的土壤脲酶、 蛋白酶和纤维素酶活性最高,分别比土著植物区增加70.35%、 21.51%和227.86%; 对于蔗糖酶活性,五爪金龙、 南美蟛蜞菊入侵区的增幅则分别达到322.58%和157.14%; 过氧化氢酶活性各处理间的差异较小,差异均不显著。4)两种外来植物入侵能够提高土壤微生物群落的代谢活性,平均孔颜色变化率(AWCD)在整个培育周期内均表现为五爪金龙入侵区>南美蟛蜞菊入侵区>土著植物区,其中72 h的AWCD值分别为1.18、 0.88和0.56,差异显著。与土著植物区相比,五爪金龙入侵区6种类型碳源的利用效率显著提高,其增幅高达75.00%~162.86%; 南美蟛蜞菊入侵区碳水化合物类、 羧酸类和聚合物类碳源的利用率亦显著提高,其增幅分别为87.72%、 41.18%和83.72%; 两种入侵植物对不同类型碳源的利用程度存在一定差异,五爪金龙对羧酸类、 胺类碳源的利用率显著高于南美蟛蜞菊。主成分分析显示,PC1与PC2能够解释不同入侵区土壤微生物群落碳源利用数据71.89%的总体变异,其中PC1主要受碳水化合物类、 氨基酸类与聚合物类碳源的影响,PC2则主要受碳水化合物类与羧酸类碳源的制约。两种外来植物入侵对土壤微生物群落的功能多样性产生重要影响,其中入侵地土壤微生物群落的Shannon-Wiener指数(H)、 Mc Intosh指数(U)、 丰富度指数(S)和Simpson优势度指数(Ds)显著高于土著植物区,但两个入侵区之间的差异较小; 三个处理区的Pielou均匀度指数(E)差异不明显。【结论】五爪金龙、 南美蟛蜞菊两种外来植物能够改善入侵地的土壤营养环境,提高土壤肥力水平,形成对自身生长、 竞争有利的微环境,从而加快入侵扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号