首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative trait loci (QTLs) with additive (a), additive × additive (aa) epistatic effects, and their treatmental interactions (at and aat) were studied under salt stress and normal conditions at seedling stage of wheat (Triticum aestivum L.). A set of 182 recombinant inbred lines (RILs) derived from cross Xiaoyan 54 × Jing 411 were used. A total of 29 additive QTLs and 17 epistasis were detected for 12 traits examined, among which eight and seven, respectively, were identified to have QTL × treatment effects. Physiological traits rather than biomass traits were more likely to be involved in QTL × treatment interactions. Ten intervals on chromosomes 1A, 1D, 2A (two), 2D, 3B, 4B, 5A, 5B and 7D showed overlapping QTLs for different traits; some of them represent a single locus affecting different traits and/or the same trait under both treatments. Eleven pairs of QTLs were detected on seemingly homoeologous positions of six chromosome groups of wheat, showing synteny among the A, B and D genomes. Ten pairs were detected in which each pair was contributed by the same parent, indicating a strong genetic plasticity of the QTLs. The results are helpful for understanding the genetic basis of salt tolerance in wheat and provide useful information for genetic improvement of salt tolerance in wheat by marker-assisted selection.  相似文献   

2.
Quantitative trait loci (QTLs) influencing textural properties (hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, and resilience)of wheat for Chinese northern-style steamed bread were studied using a doubled haploid (DH) population containing 168 lines derived from a cross between elite Chinese wheat cultivars Huapei 3 and Yumai 57 (Triticum aestivum L.). The DH population and parents were grown in 2007 and 2008 in Tai’an and 2008 in Suzhou. QTL analyses were performed using the software QTL Network version 2.0 and IciMapping v2.2 based on the mixed linear model. Thirty nine putative QTLs were detected on 14 chromosomes: viz. 1A, 2A, 3A, 4A, 6A, 1B, 2B, 3B, 5B, 6B, 7B, 5D, 6D, and 7D, and single QTLs explained 3.91–35.17% of the phenotypic variation. Eight pairs of QTLs with epistatic effects and/or epistasis × environment (AAE) effects were detected for adhesiveness, resilience, hardness, and cohesiveness on chromosomes 2A, 1B and 3D. Several co-located QTLs with additive effects were detected on chromosomes 2B, 5D, 6A, 3A, 3B and 6D. Two clusters of three QTLs for steamed bread textural properties (chewiness, gumminess, and hardness) and for adhesiveness, cohesiveness and resilience were detected on chromosome 2B. Two co-located QTLs with epistatic effects were detected on chromosomes 1B and 3A. Both additive effects and epistatic effects were important for Chinese steamed bread textural properties, which were also subject to environmental modifications. The information obtained in this study will be useful for manipulating QTLs determining Chinese steamed bread textural properties by molecular marker-assisted selection.  相似文献   

3.
The inheritance of flowering time trait in spring-type rapeseed (Brassica napus L.) is poorly understood, and the investigations on mapping of quantitative trait loci (QTL) for the trait are only few. We identified QTL underlying variation for flowering time in a doubled haploid (DH) mapping population of nonvernalization-responsive canola (B. napus L.) cultivar 465 and line 86 containing introgressions from Houyou11, a Chinese early-flowering cultivar in Brassica rapa L. Significant genetic variation in flowering time and response to photoperiod were observed among the DH lines from 465/86. A molecular linkage map was generated comprising three types of markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 4 major loci, localized on four different linkage groups A6, A7, C8 and C9. These loci each accounted for between 9.2 and 12.56 % of the total genotypic variation for first flowering. The published high-density maps for flowering time mapping used different marker systems, and the parents of our crosses have different genetic origins, with either spring-type B. napus or B. rapa. So we cannot determine whether the QTL on the same linkage groups were in the same region or not. There was evidence of additive × additive epistatic effects for flowering time in the DH population. Epistasis existed not only between main-effect QTLs, but also between QTLs with minor effects. Four pair of epistasis effects between minor QTLs explained about 20 % of the genetic variance observed in the DH population. The results indicated that minor QTLs for flowering time should not be ignored. Significant genotypes × environment interactions were also found for the quantitative traits, and with significant change in the ranking of the DH lines in different environments. The results implied that FQ3 was a non-environment-specific QTL and may control flowering time by autonomous pathway. FQ4 were winter-environment-specific QTL and may control flowering time by photoperiod-pathway. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for high altitude areas, via marker-assisted selection.  相似文献   

4.
Plant height is an important plant architecture trait that determines the canopy structure, photosynthetic capacity and lodging resistance of upland cotton populations. To understand the genetic basis of plant height for marker-assisted breeding, quantitative trait loci (QTL) analysis was conducted based on the genetic map of recombinant inbred lines (RILs) derived from the cross “CRI12 × J8891” (Gossypium hirsutum L.). Three methods, including composite interval mapping, multiple interval mapping and multi-marker joint analysis, were used to detect QTL across multiple environments in the RILs and in the immortalized F2 population developed through intermating between RILs. A total of 19 QTL with genetic main effects and/or genetic × environment interaction effects were identified on 15 chromosomes or linkage groups, each explaining 5.8–14.3 % of the phenotypic variation. Five digenic epistatic QTL pairs, mainly involving additive × additive and/or dominance × dominance, were detected in different environments. Seven out of eight interacting loci were main-effect QTL, suggesting that these loci act as major genes as well as modifying genes in the expression of plant height. The results demonstrate that additive effects, dominance and epistasis are all important for the genetic constitution of plant height, with additive effects playing a more important role in reducing plant height. QTL showing stability across environments that were repeatedly detected by different methods can be used in marker-assisted breeding.  相似文献   

5.
The elite indica rice variety Hua-jing-xian 74 and its 12 single segment substitution lines (SSSLs), all of which have been shown to have quantitative trait loci (QTL) for panicle number (PN), were used as crossing parents to construct a half-diallel crossing population with the aim of analyzing the expression of these QTL under different cropping densities. A total of 91 half-diallel crossing combinations were grown in two planting seasons at three cropping densities. PN was measured at the mature stage. The additive, dominant and epistatic effects of the 12 QTL as well as their interaction effects with the seasons and with the densities were estimated based on genetic effect components. Our analysis revealed that PN generally decreased with increasing cropping density. In the six single environments, eight additive QTL, nine dominant QTL and 49 pairs of epistatic QTL were detected, which were mostly associated with estimated positive, positive and negative effects, respectively. Expression of these QTL differed across planting seasons and cropping densities, implying an existing of QTL-by-environment interaction. Further analysis of the QTL effect components revealed that seven, eight and 28 pairs of QTL were present with significant additive, dominance, epistasis and/or interaction effects with densities. QTL additive and dominant effects were mostly positive, while epistatic effects were all negative. No significant QTL-by-season effects were detected. QTL Pn3-1, without any significant additive-by-density interaction effect, showed stable additive expression across densities. QTL Pn3-1, Pn3-2 and Pn6-1 showed stable dominance expression, and QTL pairs Pn2-1/Pn9, Pn2-2/Pn3-1, Pn2-2/Pn6-2, Pn3-1/Pn6-1, Pn3-1/Pn7 and Pn6-1/Pn6-3 had stable epistasis expression. The remaining significant QTL had different effects across densities. We determined that a density of 10 × 16.7 cm2 had little influence on QTL expression, that a density of 16.7 × 16.7 cm2 mostly increased QTL additive and dominant effects and decreased QTL epistatic effects and that a density of 23.3 × 16.7 cm2 had the opposite impact on QTL effects compared with 16.7 × 16.7 cm2. Additionally, the influence of density on QTL epistatic effect was generally larger than that on QTL additive or dominant effect. These results provide the information on cropping density and how it influences PN QTL expression, which may be useful information to improve rice PN via heterosis and/or QTL pyramiding.  相似文献   

6.
Anthocyanins and proanthocyanidins are the primary pigments of red rice and are also important functional nutrients for human health. To identify novel quantitative trait loci (QTLs) underlying anthocyanins and proanthocyanidins (ANC and PAC) in rice, a recombinant inbred line (RIL) derived from a cross of red rice ‘Hong Xiang 1’ (‘HX1’) and white rice ‘Song 98-131’ (‘S98-131’) was cultivated in six environments. A genetic map containing 126 markers covering 1833.4 cM with an average of 14.55 cM between markers was constructed. A total of 21 additive QTLs (A-QTLs) for ANC and PAC were identified from six environments using the IciMapping v3.3 software. Two new QTLs, qANC3 and qPAC12-4, were detected in several environments, and explained significant phenotypic variance. Nine QTLs of ANC and PAC were detected with additive × environmental interaction effects (AE effects) by QTLNetwork 2.1 software, but no epistatic and epistatic × environmental interaction effects (AA and AAE effects) were detected. The information obtained in this study could be useful for fine mapping and molecular marker-assisted selection of ANC and PAC in rice.  相似文献   

7.
Y. Xu  S. Li  L. Li  X. Zhang  H. Xu  D. An 《Plant Breeding》2013,132(3):276-283
Quantitative trait loci (QTLs) for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat were identified. A set of 131 recombinant inbred lines derived from cross Chuan 35050 × Shannong 483 were evaluated under salt stress and normal conditions. Wide variation was found for all studied traits. A total of 18 additive and 16 epistatic QTLs were detected, among which five and 11 were with significant QTL × treatment effects. Ten QTL clusters were identified, and each may represent a single gene or closely linked genes. The locus controlling shoot K+/Na+ concentration ratio and shoot Na+ concentration on chromosome 5A may be identical to Nax2. The interval Xgwm6‐Xgwm538 on chromosome 4B for total dry weight was also identified in a previous study, both near the marker Xgwm6. The marker Xgwm6 may be useful for marker‐assisted selection. Six pairs of homoeologous QTLs were detected, showing synteny among the A, B and D genomes. These results facilitate understanding the mechanisms and the genetic basis of salt tolerance in wheat.  相似文献   

8.
A recombinant inbred line (RIL) population with 305 lines derived from a cross of Hanxuan 10 × Lumai 14 was used to identify the dynamic quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Plant heights of RILs were measured at five stages in three environments. Total of seven genomic regions covering PH QTL clusters on different chromosomes identified from a DH population derived from the same cross as the RIL were used as the candidate QTLs and extensively analyzed. Five additive QTLs and eight pairs of epistatic QTLs significantly affecting plant height development were detected by unconditional QTL mapping method. Six additive QTLs and four pairs of epistatic QTLs were identified using conditional mapping approach. Among them, three additive QTLs (QPh.cgb-1B.3, QPh.cgb-4D.1, QPh.cgb-5B.2) and three pairs of epistatic QTLs (QPh.cgb-1B.1QPh.cgb-1B.3, QPh.cgb-2A.1QPh.cgb-2D.1, QPh.cgb-2D.1QPh.cgb-5B.2) were common QTLs detected by both methods. Three QTLs (QPh.cgb-4D.1, QPh.cgb-5B.3, QPh.cgb-5B.4) were expressed under both drought and well-water conditions. The present data are useful for wheat genetic manipulations through molecular marker-assisted selection (MAS), and provides new insights into understanding the genetic mechanism and regulation network underlying the development of plant height in crops. Our result in this study indicated that combining unconditional and conditional mapping methods could make it possible to reveal not only the stable/conserved QTLs for the developmental traits such as plant height but also the dynamic expression feature of the QTLs.  相似文献   

9.
用PH82-2/内乡188杂交后代240个F5:6家系,按照α-lattice设计,分别种植在安阳、焦作和泰安,对产量和抗白粉病等性状进行了考察。利用SSR和蛋白标记对群体进行部分连锁作图,分析1BL/1RS易位对产量及其相关性状的遗传效应。结果表明,1BL/1RS易位系对产量、穗数/m2和抽穗期的影响不显著;易位系的千  相似文献   

10.
Spike density (SD), an important spike morphological trait associated with wheat yield, is the spikelet number per spike (SNS) divided by spike length (SL). In this study, phenotypic data from eight environments were collected and a recombinant inbred line population (RIL) constructed by the wheat line 20828 and the cultivar 'Chuannong16' and a Wheat55K SNP array-based constructed genetic linkage map were used to identify SD quantitative trait locus (QTL). Correlation between SD and other agronomic traits was calculated. Genes associated with plant growth and development for major loci were predicted. The results showed that 24 QTLs associated with SD were detected in eight environments. Among them, three major QTL, namely QSd.sicau-5B.2, QSd.sicau-2D.3 and QSd.sicau-4B.1, explained up to 35.62%, 14.21% and 11.23% of phenotypic variation, respectively. The positive alleles of them were all derived from 'Chuannong16'. The significant relationships between SD and other agronomic traits were detected and discussed. Taken together, the stably expressed SD QTL under different environments identified in this study provided theoretical guidance for further fine mapping and germplasm improvement.  相似文献   

11.
小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位   总被引:8,自引:3,他引:5  
张坤普  赵亮  海燕  陈广凤  田纪春 《作物学报》2008,34(8):1350-1357
由小麦品种花培3号和豫麦57杂交获得了DH群体168个株系, 利用305个SSR标记对白粉病成株抗性、抗倒伏性和穗下节长度进行了QTL定位研究。DH群体及两亲本于2005年和2006年种植于山东泰安, 2006年种于安徽宿州。利用基于混合线性模型的QTLNetwork 2.0软件, 共检测到12个加性效应位点和10对上位效应位点。在4D染色体上控制白粉病成株抗性的qApr4D, 贡献率为20.0%, 在各环境中稳定表达, 其抗病等位基因来源于抗病亲本豫麦57; 在7D染色体上控制小麦穗下节长度的qIlbs7D, 贡献率为12.9%, 在各环境中稳定表达。加性效应和上位效应对小麦白粉病成株抗性、抗倒伏性和穗下节长度的遗传起重要作用, 并且基因与环境常常具有互作效应。以上两个QTL可分别用于小麦白粉病成株抗性和穗下节长度的分子标记辅助选择。  相似文献   

12.
Flour color is an important trait in the assessment of flour quality for the production of many end products. In this study, quantitative trait loci (QTLs) with additive effects, epistatic effects, and QTL × environment (QE) interactions for flour color in bread wheat (Triticum aestivum L.) were studied, using a set of 168 doubled haploid (DH) lines derived from a Huapei 3 × Yumai 57 cross. A genetic map was constructed using 283 simple sequence repeats (SSR) and 22 expressed sequence tags (EST)-SSR markers. The DH and parents were evaluated for flour color in three environments. QTL analyses were performed using QTLNetwork 2.0 software based on a mixed linear model approach. A total of 18 additive QTLs and 24 pairs of epistatic QTLs were detected for flour color, which were distributed on 19 of the 21 chromosomes. One major QTL, qa1B, closely linked to barc372 0.1 cM, could account for 25.64% of the phenotypic variation of a* without any influence from the environments. So qa1B could be used in the molecular marker-assisted selection (MAS) in wheat breeding programs. The results showed that both additive and epistatic effects were important genetic basis for flour color, and were also sometimes subject to environmental modifications. The information obtained in this study should be useful for manipulating the QTLs for flour color by MAS in wheat breeding programs. Kun-Pu Zhang and Guang-Feng Chen contributed equally to this study.  相似文献   

13.
多种环境下大豆单株粒重QTL的定位与互作分析   总被引:1,自引:0,他引:1  
定位大豆单株粒重QTL、分析QTL间的上位效应及QTL与环境互作效应, 有利于大豆单株粒重遗传机理的深入研究。利用147个F2:14~F2:18 RIL群体, 5年2点多环境下以CIM和MIM方法同时定位大豆单株粒重QTL, 检测到17个控制单株粒重的QTL, 分别位于D1a、B1、B2、C2、F、G和A1连锁群上, 贡献率为6.0%~47.9%;用2种方法同时检测到3个QTL, 即qSWPP-DIa-3、qSWPP-F-1和qSWPP-D1a-5, 贡献率为6.3%~38.3%;2年以上同时检测到4个QTL, 即qSWPP-DIa-1、qSWPP-DIa-2、qSWPP-B1-1和qSWPP-G-1, 贡献率为8.1%~47.9%;利用QTLMapper分析QE互作效应和QTL间上位效应, 7种环境下的数据联合分析得到1个QE互作QTL和4对上位效应QTL, 贡献率和加性效应都较小。在分子标记辅助育种中应该同时考虑主效QTL及各微效QTL之间的互作。  相似文献   

14.
High iron levels in rice soils represent a major problem for seedling establishment and crop growth, and rapid coleoptile elongation is the mechanism for the rice to cope with the induced stress. Quantitative trait loci (QTLs) analysis for coleoptile elongation rate (CER) in rice (Oryza sativa L.) was performed to study the inheritance of CER and its response to Fe nutrition. A recombinant inbred line (RIL) population of 244 lines derived from the cross zhenshan97B/miyang46 was germinated in 2004 under four Fe concentrations (0, 1.79, 7.16, and 14.32 mM). Seven QTLs with additive effects of stimulating CER were detected under the four Fe concentrations and they were localized on chromosome 1, 4, 5 and 7 with LOD ranging from 2.88 to 15.94 and their contribution to total phenotypic variance ranging from 4.17% to 15.87%, respectively. In addition, 21 QTLs with additive × additive epistasis were detected on all chromosomes but 4 and 9. The detected QTLs with additive effect mainly came from the male parent ZS97B. The detected number of QTLs with additive and epistatic effects for CER varied with Fe concentration. An additive QTL with G × Fe effect was detected between RZ460 and RZ730 markers of chromosome 1 using multi-environmental model of QTL Mapper 1.6 and considering Fe concentration as an environmental factor. The pattern of CER in the different Fe concentrations was well characterized by the genetic model of quantitative traits. It was found that some RILs had higher CER than both parents in each Fe concentration.  相似文献   

15.
Jan Bocianowski 《Euphytica》2014,196(1):105-115
Epistasis, is the interaction between alleles from two or more loci determining complex traits, and thus plays an important role in the development of quantitative traits of crops. In mapping studies of inbreeding species epistasis is usually defined as the interactions between quantitative trait loci with significant additive gene effects. Indeed, in many studies, genes with small effects do not come into the final model and thus the total epistasis interaction effect is biased. Many loci may not have a significant direct effect on the trait under consideration, but they may still affect trait expression by interacting with other loci. In this paper the benefits of using all loci, not only the loci with significant main effects, for estimation of the epistatic effects are presented. The particular examples are with doubled haploids lines and so are restricted to homozygotes and thus additive genetic effects and additive × additive interactions. Numerical analyses were carried out on three populations of doubled haploid lines of barley (Hordeum vulgare L.): 120 doubled haploid lines from the Clipper × Sahara 3771 cross, 145 doubled haploid lines from the Harrington × TR306 cross and 150 doubled haploid lines from the Steptoe × Morex cross. In total, 157 sets of observations were analyzed and altogether 728 pairs of loci were observed for the three datasets.  相似文献   

16.
Increasing sugar content in silage maize stalk improves its forage quality and palatability. The genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement, yet little information on QTL for stalk sugar content in maize has been reported. To this end, we investigated QTLs associated with stalk sugar traits including Brix, plant height (PHT), three ear leaves area (TELA), and days to silking (DTS) in two environments using a population of 202 recombinant inbred lines from a cross between YXD053, which has a high stalk sugar content, and Y6-1, which has a low stalk sugar content. A genetic map with 180 SSR and 10 AFLP markers was constructed, which spanned 1,648.6 cM of the maize genome with an average marker distance of 8.68 cM, and QTLs were detected using composite interval mapping. Seven QTLs controlling Brix were mapped on chromosomes 1, 2, 6 and 9 in the combined environments. These QTLs could explain 2.69–13.08 % of the phenotypic variance. One major QTL for Brix on chromosome 2 located between the markers bnlg1909 and umc1635 explained 13.08 % of the phenotypic variance. Y6-1 also contributed QTL allele for increased Brix on chromosome 6. One major QTLs controlling PHT on chromosome 1 and TELA on chromosome 4 were also identified and accounted for 13.68 and 12.49 % of the phenotypic variance, respectively. QTL alleles for increased DTS were located on chromosomes 1 and 5 of YXD053. Significant epistatic effects were identified in four traits, but no significant QTL × environment interactions were observed. The information presented here may be valuable for stalk sugar content improvement via marker-assisted selection in silage maize breeding programs.  相似文献   

17.
A quantitative trait loci (QTL) analysis of grain yield and yield-related traits was performed on 93 durum wheat recombinant inbred lines derived from the cross UC1113 × Kofa. The mapping population and parental lines were analyzed considering 19 traits assessed in different Argentine environments, namely grain yield, heading date, flowering time, plant height, biomass per plant, and spikelet number per ear, among others. A total of 224 QTL with logarithm of odds ratio (LOD) ≥ 3 and 47 additional QTL with LOD > 2.0 were detected. These QTL were clustered in 35 regions with overlapping QTL, and 12 genomic regions were associated with only one phenotypic trait. The regions with the highest number of multi-trait and stable QTL were 3BS.1, 3BS.2, 2BS.1, 1BL.1, 3AL.1, 1AS, and 4AL.3. The effects of epistatic QTL and QTL × environment interactions were also analyzed. QTL putatively located at major gene loci (Rht, Vrn, Eps, and Ppd) as well as additional major/minor QTL involved in the complex genetic basis of yield-related traits expressed in Argentine environments were identified. Interestingly, the 3AL.1 region was found to increase yield without altering grain quality or crop phenology.  相似文献   

18.
The oil accumulation in the developing soybean seed has been shown to be a dynamic process with different rates and activities at different phases affected by both genotype and environment. The objective of the present study was to investigate additive, epistatic and quantitative trait loci (QTL) × environment interaction (QE) effects of the QTL controlling oil filling rate in soybean seed. A total of 143 recombinant inbred lines (RILs) derived from the cross of Charleston and Dongnong 594 were used in this study to obtain 2 years of field data (2004 and 2005). A total of 26 QTL with significantly unconditional and conditional additive (a) effect and/or additive × environment interaction (ae) effect at different filling stages were identified on 14 linkage groups. Among the QTL with significant a effects, 18 QTL showed positive effects and 6 QTL had negative effects on seed filling rate of oil content during seed development. A total of 29 epistatic pairwise QTL underlying seed filling rate were identified at different filling stages. About 28 pairs of the QTL showed additive × additive epistatic (aa) effects and 14 pairs of the QTL showed aa × environment interaction (aae) effects at different filling stages. QTL with aa and aae (additive × additive × environment) effects appeared to vary at different filling stages. Our results demonstrated that oil filling rate in soybean seed were under genetic, developmental and environmental control.  相似文献   

19.
The aim of this work was to map quantitative trait loci (QTLs) associated with flour yellow color (Fb*) and yellow pigment content (YPC) in durum wheat (Triticum turgidum L. var. durum). Additionally, QTLs affecting flour redness (Fa*) and brightness (FL*) color parameters were investigated. A population of 93 RILs (UC1113 × Kofa) was evaluated in three locations of Argentina over 2 years. High heritability values (>94%) were obtained for Fb* and YPC, whereas FL* and Fa* showed intermediate to high values. The main QTLs affecting Fb* and YPC overlapped on chromosome arms 4AL (4AL.2), 6AL (6AL.2), 7AS, 7AL, 7BS (7BS.2) and 7BL (7BL.2). The 7BL.1 QTL included the Psy-B1 locus, but one additional linked QTL was detected. A novel minor QTL located on 7AS affected Fb*, with an epistatic effect on YPC. An epistatic interaction occurred between the 7AL and 7BL.2 QTLs. The 4AL.2 QTL showed a strong effect on Fb* and was involved in two digenic epistatic interactions. The 6AL.2 QTL explained most of the variation for Fb* and YPC. The main QTLs affecting FL* and Fa* were located on 2BS and 7BL, respectively. These results confirm the complex inheritance of flour color traits and open the possibility of developing perfect markers to improve pasta quality in Argentinean breeding programs.  相似文献   

20.
Feiyu Tang  Weujun Xiao 《Euphytica》2013,194(1):41-51
Within-boll yield components are the most basic contributors to lint and seed yield of cotton (Gossypium hirsutum L.), which is a major source of natural fiber and edible oil throughout the world. Little information is available on genetic effects and heterosis of these traits in cotton. Three cotton cultivars and six breeding lines differing in within-boll yield components were used for this study. Parents and their F1 progeny with reciprocals from a 3×6 factorial mating design were grown at Jiangxi Agricultural University experimental farm in 2008 and 2009. Seven within-boll yield components and two boll bur characters were analyzed under an additive-dominance genetic model with genotype and environment interaction. Additive effects were significant for all traits and dominance effects were significant for all traits except seed mass per seed. Genetic variances for lint mass per seed, SM/S and boll bur weight were primarily additive variances ranging from 39.6 to 58.9 %. Lint mass per boll and seed number per boll variances were primarily due to dominance genetic effects ranging from 36.4 to 48.8 %. Dominance and additive effects were equally important for boll weight, seed mass per boll and boll bur percentage. Additive and additive × environment effects were more important than other effects for lint percentage. A802-1 had the best mean performance and additive effects increasing BW, SM/B, S/B and SM/S, but reduced LP and LM/S. A9-1 and Lu40534 had additive effects associated with increasing LP. The two crosses A9-1×Lu40534 and Tezsh×33B were detected with favorable heterozygous dominant effects and heterosis over best parent for BW, LP, LM/B, SM/B and S/B. Favorable genotypic and phenotypic correlations were identified between within-boll lint yield components (LM/B, LM/S) and within-boll seed yield components (SM/B, S/B, SM/S). These results indicate that simultaneous genetic improvement of multiple within-boll yield components can be expected in breeding populations derived from these cotton cultivars and breeding lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号