首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sponge gourd is a popular vegetable grown throughout India. Tomato leaf curl New Delhi virus, the causal virus of tomato leaf curl disease, has recently been reported to be associated with sponge gourd, causing up to 100% crop loss under epidemic conditions. We have collected 30 genotypically diverse genotypes of sponge gourd from different parts of India, screened these for resistance under natural epiphytotic conditions, and then confirmed the results through challenge inoculation with a purified strain of the virus under insect-proof greenhouse conditions. The minimum vulnerability index was recorded in genotype DSG-6 (3.33), followed by DSG 7 (6.0) under the challenge (whitefly-populated) inoculation conditions. Two susceptible genotypes (‘Pusa Sneha’ and NSG-1-11), both possessing desirable fruit characters, were crossed with the two most promising resistant lines (DSG-6 and DSG-7) and the disease reaction of segregating and backcross generations studied through challenge inoculation with a purified strain of virus under insect-proof greenhouse conditions. A chi-square (χ2) test of frequency distribution based on the vulnerability index of the F2 progenies of the two resistant × susceptible crosses revealed monogenic dominant Mendelian ratio 3(R):1(S) to be the best fit in all crosses. This monogenic dominant model was further confirmed by the 1(R):1(S) ratio found to be best fit for the test cross with the susceptible parent. These results reveal that resistance to Tomato leaf curl New Delhi virus associated with yellow mosaic disease of sponge gourd is controlled by a single dominant gene in the genetic background of the resistant parents (DSG-6 and DSG-7) and that these two lines can be effectively utilized for the development of high-yielding and yellow mosaic disease-resistant varieties/hybrids of sponge gourd. This is the first conclusive identification of a resistant source and the inheritance of resistance against Tomato leaf curl New Delhi virus in sponge gourd.  相似文献   

3.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

4.
Cucumber green mottle mosaic virus (CGMMV) is a severe threat for cucumber production worldwide. At present, there are no cultivars available in the market which show an effective resistance or tolerance to CGMMV infection, only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis sativus, as well as C. anguria and C. metuliferus, were mechanically infected with the European and Asian strains of CGMMV and screened for resistance, by scoring symptom severity, and conventional RT-PCR. The viral loads of both CGMMV strains were determined in a selected number of genotypes using quantitative RT-PCR. Severe symptoms were found following inoculation in C. metuliferus and in 44 C. sativus accessions, including C. sativus var. hardwickii. Ten C. sativus accessions, including C. sativus var. sikkimensis, showed intermediate symptoms and only 2 C. sativus accessions showed mild symptoms. C. anguria was resistant to both strains of CGMMV because no symptoms were expressed and the virus was not detected in systemic leaves. High amounts of virus were found in plants showing severe symptoms, whereas low viral amounts found in those with mild symptoms. In addition, the viral amounts detected in plants which showed intermediate symptoms at 23 and 33 dpi, were significantly higher in plants inoculated with the Asian CGMMV strain than those with the European strain. This difference was statistically significant. Also, the amounts of virus detected over time in plants did not change significantly. Finally, the two newly identified partially resistant C. sativus accessions may well be candidates for breeding programs and reduce the losses produced by CGMMV with resistant commercial cultivars.  相似文献   

5.

Background

Cucumber mosaic virus (CMV) is the most serious virus disease affecting chilli (Capsicum annuum L.) worldwide and the absence of natural resistance makes management of CMV outbreaks difficult. The characterization of improved sources of resistance to CMV in chilli would facilitate the development of commercially acceptable chilli varieties with adequate levels of CMV resistance. A total of 30 chilli genotypes were evaluated for their reaction to CMV in field and artificial inoculated conditions during 2010-2011 and 2011-2012. Large differences were observed among genotypes for disease incidence, severity indexes, and yield losses. Based on observed data, genotype CA23 (Noakhali) was identified as resistant, while CA12 (Comilla-2) was categorized as moderately resistant to CMV both in natural and inoculated conditions. Enzyme-linked immunosorbent assay absorbance values of samples taken from CMV-infected leaves corresponded well with visible viral symptoms for these genotypes. The identified C. annuum CA23 and CA12 genotypes represent previously undescribed and potentially useful sources of CMV resistance.
  相似文献   

6.
The genetics of resistance to Cucumber mosaic virus (CMV) in Cucumis sativus var. hardwickii R. Alef, the wild progenitor of cultivated cucumber was assessed by challenge inoculation and by natural infection of CMV. Among the 31 genotypes of C. sativus var. hardwickii collected from 21 locations in India the lowest mean percent disease intensity (PDI) was recorded in IC-277048 (6.33%) while the highest PDI was observed in IC-331631 (75.33%). All the four cultivated varieties (DC-1, DC-2, CHC-1 and CHC-2) showed very high PDI and susceptible disease reaction. Based on mean PDI, 8 genotypes were categorized as resistant, 13 as moderately resistant, 9 as moderately susceptible and one as susceptible. A chi-square test of frequency distribution based on mean PDI in F2 progenies of six resistant × susceptible crosses revealed monogenic recessive Mendelian ratio 1(R):3(S) to be the best fit. This monogenic recessive model was further confirmed by 1(R):1(S) ratio as the best fit for back cross with resistant parent and no fit for either 3:1 or 1:1 in the back cross with the susceptible parent. The results revealed that CMV resistance in C. sativus var. hardwickii was controlled by a single recessive gene. Considering the cross compatibility between C. sativus var. hardwickii and cultivated cucumber, the resistance trait can be easily transferred to cultivated species through simple backcross breeding.  相似文献   

7.
8.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.  相似文献   

9.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

10.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

11.
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed. In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed.  相似文献   

12.
Cucumber (Cucumis sativus L.) is a major cucurbit vegetable species whose genetic base has been drastically reduced during its domestication. The crop’s narrow genetic base (3–12% DNA polymorphism) has resulted from the use of limited genetic material and intense selection during plant improvement. Recently, however, interspecific hybridization has been successful in Cucumis via mating of C. hystrix Chakr. and C. sativus, which resulted in the amphidiploid C. hytivus. We report herein a marker-assisted strategy for increasing genetic diversity in cucumber through introgression backcrossing employing C. hytivus. The comparatively late-flowering but high-yielding, indeterminate, monoecious line WI 7012A (P1; donor parent) derived from a C. hytivus × C. sativus-derived line (long-fruited Chinese C. sativus cv. Beijingjietou) was initially crossed to the determinate, gynoecious C. sativus line WI 7023A (P2; recurrent parent 1), and then advanced backcross generation progeny (BC2) were crossed with the gynoecious indeterminate line WI 9-6A (P3; recurrent parent 2). More specifically, a single F1 individual (P1 × P2) was backcrossed to P2, and then BC progeny were crossed to P2 and P3, where marker-assisted selection (MAS) for genetic diversity (8 mapped and 16 unmapped markers; designated Sel) or no selection (designated NSel) was applied to produce BC3P2 (Sel) and BC3P3 (Sel), and BC2P2 (NSel) and BC2P2S1 (NSel) progeny. Relative vegetative growth, number of lateral branches (LB), days to flowering (DF), yield (fruit number), and fruit quality [as measured by length:diameter (L:D) and endocarp:total diameter (E:T) ratios] were assessed in parents and cross-progeny. DF varied from ~20 (BC3P2Sel) to ~25 days (BC2P3Sel) among the populations examined, where progeny derived from P2 possessed the shortest DF. Differences in cumulative yield among the populations over six harvests were detected, varying from ~8 fruits per plant in BC3P2 (Sel) to ~39 fruits per plant in BC2P3 (Sel). Although the vigorous vegetative growth of line P1 was observed in its backcross progeny, highly heterozygous and polymorphic backcross progeny derived from P3 were comparatively more vigorous and bore many high-quality fruit. Response to selection was detected for LB, DF, L:D, and E:T, but the effectiveness of MAS depended upon the parental lines used. Data indicate that the genetic diversity of commercial cucumber can be increased by introgression of the C. hystrix genome through backcrossing.  相似文献   

13.
Agrobacterium tumefaciens mediated in planta transformation protocol was developed for castor, Ricinus communis. Two-day-old seedlings were infected with Agrobacterium strain EHA105/pBinBt8 harboring cry1AcF and established in the greenhouse. Screening the T1 generation seedlings on 300 mg L−1 kanamycin identified the putative transformants. Molecular and expression analysis confirmed the transgenic nature and identified high-expressing plants. Western blot analysis confirmed the co-integration of the nptII gene in the selected transgenic plants. Bioassay against Spodoptera litura corroborated with high expression and identified five promising effective lines. Analysis of the T2 generation plants proved the stability of the transgene indicating the feasibility of the method.  相似文献   

14.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

15.
16.
Breeding for more phosphorus (P)-efficient crops is one strategy to reduce the use of P fertilizers, thus mitigating the environmental and economic impacts of agriculture. Variation in root architecture and the response to P deficiency were studied in C. melo. Forty accessions representing genetic diversity within the species were screened for their root systems in normal and deficient P conditions at the seedling stage. Various parameters of P-uptake and P-use were analyzed in a subset of accessions at 40 days. Significant differences in root architecture were observed, with the taproot systems prevailing among the wild and exotic accessions, and more branched root systems in cultivated stocks. Moreover, differences in the plastic response of roots to P starvation were observed. Variation in different P-use and -uptake traits correlated with the root architecture. Within ssp. melo, the inodorus and flexuosus landraces had larger and more branched roots and more efficient P-uptake, thereby providing a close genepool for breeding. Within ssp. agrestis, conomon and momordica accessions can be sources of interest for the enhancement of variation in root architecture and P-use efficiency into cultivated melons. Therefore, the diversity observed within C. melo species could be useful in breeding P-efficient melon cultivars.  相似文献   

17.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

18.
Zea mays ssp. mexicana, an annual wild relative of maize, has many desirable characteristics for maize improvement. To transfer alien genetic germplasm into maize background, F1 hybrids were generated by using Z. mays ssp. mexicana as the female parent and cultivated maize inbred line Ye515 as the male parent. Alien introgression lines, with a large range of genetic diversity, were produced by backcross and successive self-pollinations. A number of alien introgression lines with the predominant traits of cultivated maize were selected. Genomic in situ hybridization (GISH) proved that small chromosome segments of Z. mays ssp. mexicana had been integrated into the maize genome. Some outstanding alien introgression lines were evaluated in performance trials which showed 54.6% hybrids had grain yield greater than that of hybrid check Yedan12 which possessed 50% Ye515 parentage, and 17.1, 9.9% hybrids had grain yield competitive or greater than those of Nongda108 and Zheng958, which were elite commercial hybrids in China, respectively. The results indicated that some of the introgression lines had excellent agronomic traits and combining ability for maize cultivar, and demonstrated that Z. mays ssp. mexicana was a valuable source for maize breeding, and could be used to broaden and enrich the maize germplasm.  相似文献   

19.
L. M. Reid  X. Zhu  A. Parker  W. Yan 《Euphytica》2009,165(3):567-578
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently largest general combining ability effects and several significant specific combining ability effects. It was concluded that some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium ear rot.  相似文献   

20.
Melon (Cucumis melo L.) fruit production in U.S. can be improved through the introgression of early fruit maturity (FM) and the enhancement of fruit color [i.e., quantity of β-carotene (QβC); orange mesocarp]. However, the genetics of FM and QβC have not been clearly defined in U.S. Western Shipping market class melons (USWS). Thus, a cross was made between the monoecious, early FM Chinese line ‘Q 3-2-2’ (non-carotene accumulating, white mesocarp) and the andromonecious, comparatively late FM USWS line ‘Top Mark’ (carotene accumulating; orange mesocarp) to determine the inheritance of FM and QβC in melon. Parents and derived cross-progenies (F1, F2, F3, BC1P1, and BC1P2) were evaluated for FM and QβC at Hancock, Wisconsin over 2 years. Estimates of narrow-sense heritability (h N2) for QβC and FM as defined by F1, F2, and BC (by individuals) were 0.55 and 0.62, respectively, while estimates based on F3 families were 0.68 and 0.57, respectively for these traits. Mesocarp color segregation (F2 and BC1P2) fit a two gene recessive epistatic model, which in turn, interacts with other minor genes. Although the inheritance of QβC and FM is complex, introgression (e.g., by backcrossing) of early FM genes resident in Chinese germplasm into USWS market types is possible. Such introgression may lead to increased yield potential in USWS market types while retaining relatively high β-carotene fruit content (i.e., orange mesocarp), if stringent, multiple location and early generation family selection (F3–4) is practiced for FM with concomitant selection for QβC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号