首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

2.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

3.
Pseudostems of bunching onion (Allium fistulosum L.) show wide variation in morphological traits and skin color. However, despite being one of the most important agronomic traits, molecular studies of bunching onion pseudostems remain limited. In this study, six morphological traits (plant height, leaf length, pseudostem length, leaf width, pseudostem width and number of leaf sheaths) along with pseudostem pigmentation indices were evaluated in two field trials using an F2:3 population derived from a single F1 cross between a white single pseudostem (non-tillering) and a red tillering bunching onion. Plant height was highly correlated with both leaf length and pseudostem length, but not the number of leaf sheaths. In contrast, the number of leaf sheaths was significantly negatively correlated with both leaf width and pseudostem width. A total of 27 QTLs for the six morphological traits were detected in 16 regions of 11 linkage groups, with a major QTL for the number of leaf sheaths repeatedly detected on Chr. 8. Meanwhile, two QTLs associated with pseudostem pigmentation were repeatedly detected on linkage groups Chr. 4a and Chr. 5a-2. The latter (qPig5a-2) was considered a major QTL, and its location estimated by marker genotyping of the F2 population around the qPig5a-2 region as being within a 7.6 cM interval.  相似文献   

4.
The yellow-green leaf color mutant (Ygm) is a spontaneous mutant derived from the common wheat (Triticum aestivum L.) cultivar Xinong1718. Genetic analysis has shown that a novel single incompletely dominant gene (Y1718) is responsible for the yellow leaf color phenotype. The progeny of Ygm exhibit three distinct leaf color phenotypes, i.e., yellow (Y), yellow-green (Yg), and normal green (G). Y plants have yellow-green leaves in the seedling stage, which become yellow or a strong gold-yellow in the booting stage, with dwarfism and thin tillers until the flowering stage, and underdeveloped thylakoid membranes without well-structured grana in the chloroplasts. Yg plants always have a yellow-green phenotype with a number of well-structured grana that are loosely connected with stroma lamellae in the chloroplasts, where their main agronomic traits are the same as Xinong1718 and G plants, but the seed yield is low. Compared with Xinong1718 and G plants, Y and Yg plants had much lower chlorophyll (Chl) a, Chl b, and carotenoid contents in the booting stage. Molecular analysis using an F2 population and F2:3 lines derived from a cross of Yg and Shannong1 indicated that the Y1718 gene is located on chromosome 2BS, where it is flanked by the simple sequence repeat marker Xwmc25 and expressed sequence tag-sequence tagged sites marker BE498358 at genetic distances of 1.7 and 4.0 cM, respectively. Our results facilitate the fine mapping and gene cloning of Y1718 to explore chlorophyll synthesis, metabolism, and development in wheat.  相似文献   

5.
The success of breeding for barley leaf rust (BLR) resistance relies on regular discovery, characterization and mapping of new resistance sources. Greenhouse and field studies revealed that the barley cultivars Baronesse, Patty and RAH1995 carry good levels of adult plant resistance (APR) to BLR. Doubled haploid populations [(Baronesse/Stirling (B/S), Patty/Tallon (P/T) and RAH1995/Baudin (R/B)] were investigated in this study to understand inheritance and map resistance to BLR. The seedlings of two populations (B/S and R/B) segregated for leaf rust response that conformed to a single gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.12, P > 0.7 for B/S and \({\text{X}}_{1:1}^{2}\) = 0.34, P > 0.5 for R/B) whereas seedlings of third population (P/T) segregated for two-gene ratio (\({\text{X}}_{1:1}^{2}\) = 0.17, P > 0.6) when tested in greenhouse. It was concluded that the single gene in Baudin and one of the two genes in Tallon is likely Rph12, whereas gene responsible for seedling resistance in Stirling is Rph9.am (allele of Rph12). The second seedling gene in Tallon is uncharacterized. In the field, APR was noted in lines that were susceptible as seedlings. A range of disease responses (CI 5–90) was observed in all three populations. Marker trait association analysis detected three QTLs each in populations B/S (QRph.sun-2H.1, QRph.sun-5H.1 and QRph.sun-6H.1) and R/B (QRph.sun-1H, QRph.sun-2H.2, QRph.sun-3H and QRph.sun-6H.2), and four QTLs in population P/T (QRph.sun-6H.2, QRph.sun-1H.2, QRph.sun-5H.2 and QRph.sun-7H) that significantly contributed to low leaf rust disease coefficients. High frequency of QRph. sun-5H.1, QRph. sun-6H.1, QRph. sun-1H.1, QRph. sun-2H.2, QRph. sun-6H.2, QRph. sun-7H (based on presence of the marker, closely associated to the respective QTLs) was observed in international commercial barley germplasm and hence providing an opportunity for rapid integration into breeding programmes. The identified candidate markers closely linked to these QTLs will assist in selecting and assembling new APR gene combinations; expectantly this will help in achieving good levels of durable resistance for controlling BLR.  相似文献   

6.
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) (Pam.) is the most devastating disease of cauliflower (Brassica oleracea var. botrytis L.; 2n = 2x = 18), taking a heavy toll of the crop. In this study, a random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) derived sequence characterized amplified region (SCAR) markers linked to the black rot resistance locus Xca1bo were developed and evaluated as a screening tool for resistance. The RAPD marker OPO-04833 and ISSR marker ISSR-11635 were identified as closely linked at 1.6 cM distance to the black rot resistance locus Xca1bo. Both the markers OPO-04833 and ISSR-11635 were cloned, sequenced and converted into SCAR markers and validated in 17 cauliflower breeding lines having different genetic backgrounds. These SCAR markers (ScOPO-04833 and ScPKPS-11635) amplified common locus and showed 100% accuracy in differentiating resistant and susceptible plants of cauliflower breeding lines. The SCAR markers ScOPO-04833 and ScPKPS-11635 are the first genetic markers found to be linked to the black rot resistance locus Xca1bo in cauliflower. These markers will be very useful in black rot resistance marker assisted breeding.  相似文献   

7.
Fruit spine size is one of the importantly external quality traits effected the economic value of cucumber fruit. Morphological–cytological observation of the fruit spine size phenotype indicated that large spine formation arises from an increasing of spiny pedestal cell number caused by cell division, and best periods to accurately score fruit spine size trait was 4th day before flowering to 7th day after flowering according the continuous observation. Genetic analysis showed that a single dominant gene determined the fruit spine size trait in cucumber. BC1 population (189 individuals) of two inbred lines (large spine PI197088 and small spine SA0422) was used for primary mapping of the SS/ss locus with 7 markers covering an interval of 37.1 cM. An F2 segregating population of 1032 individuals constructed from the same two parents (PI197088 and SA0422) was used to fine mapping of the SS/ss locus. Six new markers linked to the gene were successfully screened for construction of a fine linkage map, in which the SS/ss locus was located in the region flanked by marker SE1 (3 recombinants) and SSR43 (2 recombinants) with a 189 kb physical distance. Markers from this study will be valuable for candidate gene cloning and marker-assisted selection for cucumber breeding.  相似文献   

8.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   

9.
The individual segregations of 14 seed protein loci named, SpA to SpM and Pha (phaseolin), were analyzed in a RIL population developed from the cross Xana × Cornell 49242. These seed protein loci were included in a genetic map previously developed in the same population. Protein loci, SpA, SpB, SpE, SpI, SpJ, and Pha, are organized in two different clusters, both located in linkage group (LG) 7; SpF, SpG, SpK, SpL, and SpM, form a single cluster in LG 4; SpC, is located in LG 3; and SpD, in LG 1. A close linkage was identified between the SpD seed protein locus, and the fin gene, controlling determinate growth habit. The usefulness of the SpD locus as a marker for the indirect selection of determinate growth habit and photoperiod insensitivity was checked in a F2 population derived from the cross G12587 (an indeterminate and photoperiod sensitive nuña bean) × Sanilac (determinate and photoperiod insensitive) and in a set of Mesoamerican and Andean genotypes. Results indicate that SpD protein locus was useful to detect individuals having determinate growth habit and photoperiod insensitivity in the cross G12587 × Salinac although some recombinants were found. However, the linkage between the SpD locus and the genes controlling growth habit and photoperiod sensitivity should be checked before using the SpD locus for the indirect selection of these traits in different backgrounds.  相似文献   

10.
Tomato is affected by a large number of arthropod pests, among which the whitefly (Bemisia tabaci) is considered to be one of the most destructive. Several accessions of the wild species of Solanum galapagense, including accession LA1401, are considered resistant to whitefly (B. tabaci). This resistance has been associated with the presence of type IV glandular trichomes on the leaf surface. Our research aimed to study the inheritance of type IV glandular trichome density and its association with resistance to whitefly (B. tabaci biotype B) in populations derived from the interspecific cross Solanum lycopersicum × S. galapagense ‘LA1401.’ High estimates for both broad-sense and narrow-sense heritabilities of type IV glandular trichome densities suggest that inheritance of this trait is not complex. Whitefly resistance was associated with high density of type IV glandular trichomes. F2 (S. galapagense × S. lycopersicum) population plants selected for the highest densities of type IV glandular trichomes showed similar levels of resistance to those found in the donor of resistance LA1401.  相似文献   

11.
Upland cotton is an important economic crop that produces high-quality fiber for the textile industry. With the development of next-generation sequencing technology and improvements in human living standards, it has become possible to improve the fiber quality and yield of cotton with high-throughput molecular markers. Upland cotton 901-001 is an excellent, high-quality, non-transgenic cultivar, while the sGK156 strain shows high resistance to verticillium wilt. The phenotype of F1 plants, certified in 2008 as national variety CCRI70, shows positive transgressive characteristics such as high quality, high yield, and resistance to verticillium wilt. We developed a population of 250 recombination inbred lines from a cross between 901-001 and sGK156. The fiber strength trait of plants from nine environments was collected, and a genetic linkage map of Chr24 comprising 168 SNP marker loci covering a genetic distance of 107.46 cM and with an average distance of 0.64 cM was generated. QTLs were identified across the nine environments using the composite interval mapping method. A total of eight QTLs for FS were identified on Chr24, three of which were stably expressed in at least five environments. Some candidate genes located in qFS-c24-2 and qFS-c24-4 were functionally annotated as potentially playing important roles in fiber development, with homologous genes reported in Arabidopsis thaliana. These results suggest that QTLs identified in the present study could contribute to improving FS and may be applicable for marker-assisted selection.  相似文献   

12.
Valsa canker (Valsa ceratosperma (Tode ex Fr.) Maire) is one of the most destructive fungal diseases of apple, especially in Eastern Asia. In this study, the first high density genetic linkage map of Malus asiatica × Malus domestica was constructed by 640 simple sequence repeats (SSRs) and 490 single nucleotide polymorphisms (SNPs), which spanned 1497.5 cM with an average marker interval of 1.33 cM per marker. Quantitative trait loci (QTLs) for apple’s resistance to V. ceratosperma isolates 03-8 and xc56 were identified using the linkage map. Lesion lengths were used as the phenotypic data for the QTL analysis, which were measured on 1-year-old shoots inoculated with conidia of the two isolates. One QTL for resistance to isolate 03-8 was mapped on LG 16, and one QTL for resistance to isolate xc56 was detected on LG 9. Our research not only promoted the further understanding of the genetic basis of apple’s resistance to Valsa canker but also provided two molecular markers that might be used in future marker-assisted selection for resistance in apple breeding programs.  相似文献   

13.
Drought regularly affects rainfed lowland and upland rice ecosystems in Malaysia. Three drought yield QTLs, viz qDTY 2.2 , qDTY 3.1 and qDTY 12.1 successfully pyramided into MRQ74 to increase its yield under reproductive stage drought stress (RS). Forty-eight genotypes comprising 39 pyramided lines (PLs) with different qDTYs combinations, four parents including MRQ74 (recipient) and five checks were evaluated for morpho-physiological traits under RS and non-stress (NS). This study aims to determine which traits influenced by individual qDTY and qDTY combinations and to gain better understanding of QTL interactions in enhancing grain yield (GY) under RS. Results showed plant height, number of panicles, root length, root weight, relative water content and 100-grain weight increased while chlorophyll content and GY decreased under RS compared to NS. No significant difference was observed in days to flowering, leaf rolling and grain length between selected PLs and MRQ74 under RS. Six PLs with yield advantage (YA) of 208.17–1751.63 kg ha?1 compared to MRQ74 in RS but yielded similar to MRQ74 under NS were further selected. Under RS, qDTY class analysis showed qDTY 12.1 individually and combination qDTY 12.1  + ?qDTY 2.2 produced the highest yield of 1521.77 and 1092.30 kg ha?1 respectively. qDTY 12.1 as single or combination with other qDTY is the best qDTY in stabilizing GY under RS. PL-77 with qDTY 12.1 is the best PL with YA of more than 1100 kg ha?1 compared to MRQ74 in both RS and NS conditions can be recommended for cultivation in normal and drought-prone areas.  相似文献   

14.
Two recombinant inbred line F10 rice populations (IAPAR-9/Akihikari and IAPAR-9/Liaoyan241) were used to identify quantitative trait loci (QTLs) for ten drought tolerance traits at the budding and early seedling stage under polyethylene glycol-induced drought stress, and two traits of leaf rolling index (LRI) and leaf withering degree (LWD) under field drought stress. The results showed that the drought-tolerance capacity of IAPAR-9 was stronger than that of Akihikari and Liaoyan241. Thirty-four QTLs for 12 drought tolerance traits were detected, and among them, in the IAPAR-9/Akihikari population, qLRI9-1 and qLRI10-1 for LRI were repeatedly detected in RM3600-RM553 on chromosome 9 and in RM6100-RM3773 on chromosome 10, respectively, at two times points of July 31 and August 13 in 2014. The two QTLs are stable against the environmental impact, and qLRI9-1 and qLRI10-1 explained 6.77–13.66% and 5.01–8.32% of the phenotypic variance, respectively, at the two times points. qLWD9-2 for LWD in the IAPAR-9/Liaoyan241 population contributed 8.73% of variation was detected in the same marker interval with the qLRI9-1, and qLRI1-1 for LRI and qLWD1-1 for LWD were located in the same marker interval RM11054-RM5646 on chromosome 1, which contributed 18.82 and 5.78% of phenotype variation respectively. qGV3 for germination vigor and qRGV3 for relative germination vigor at the budding stage were detected in the same marker interval RM426-RM570 on chromosome 3, which explained 14.98 and 16.30% of the observed phenotypic variation respectively, representing major QTLs. The above-mentioned stable or major QTLs regions could be useful for molecular marker assisted selection breeding, fine mapping, and cloning.  相似文献   

15.
O. meridionalis is a wild species belonging to AA genome in the Oryza genus, which has a lot of beneficial genes for improvement of cultivated rice. In the present study, 99 chromosome single-segment substitution lines (SSSLs) were developed carrying donor segments of O. meridionalis in the genetic background of an indica cultivar, Huajingxian 74 (HJX74). The total lengths of the 99 substituted segments in the SSSLs were 1580.16 cM, with an average length of 15.11 cM per substituted segment, covering 873.94 cM and 54.98% of O.meridionalis genome. Phenotypic investigations of the SSSLs showed that three SSSLs had red pericarp, awn and showed seed shattering, respectively, indicating that these genes of O. meridionalis responsible for these traits have been transferred to the SSSLs. And wide variations were observed in seven quantitative traits including heading date and yield-related traits in 82 SSSLs.At P ≤ 0.001, 77 SSSLs showed significant differences compared with HJX74 in at least one trait either in the fall of 2014 or spring of 2015, and a total of 28 stable QTLs were detected in 24 SSSLs in both seasons. These results suggest that the SSSLs library of O. meridionalis developed in this study offers a good germplasm platform for the identification and transformation of beneficial genes of O. meridionalis, and facilitates the conservation of gene resources of O. meridionalis in vivo for long periods.  相似文献   

16.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

17.
Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula.  相似文献   

18.
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes.  相似文献   

19.
Sugar beet hybrid varieties are produced through the crosses between male sterile lines and the multigerm pollinators. The uniformity of pollinators used for hybrid crosses depends on the presence of self-sterility (S s ) and self-fertility (S f ) genes. The aim of the study was to analyze correlation between hybrid performance and genetic distance or heterozygosity of the sugar beet pollinators. Twelve diploid pollinators classified as self-sterile (S s ) or self-fertile (S f ) and two cytoplasmic male sterile (CMS) lines were crossed in line × tester scheme, producing 24 F1 hybrids. The parents and the hybrids were evaluated for root yield and quality traits, from which F1 performance, combining abilities, mid-parent and high-parent heterosis were calculated. Parental genetic distance and diversity of the pollinators were estimated by SSR markers and, together with GCA and F1 performance, correlated with the heterosis effects. The S f hybrids had better GCA and higher values of root yield, root weight, and root circumference than the S s hybrids. Heterosis was recorded in more combinations with the S f than with the S s pollinators. Parameters of genetic diversity were higher in the S s (Na = 3.125; Ne = 2.341; He = 0.555) than in the S f pollinators (Na = 3.000; Ne = 2.188; He = 0.510). Genetic distance between the tested pollinators and the CMS lines was low (0.072–0.224) indicating that the genetic base of the investigated germplasm was narrow. Correlation of the heterosis effects with GD and heterozygosity was detected only for the root yield traits.  相似文献   

20.
Forsythia suspensa and F.Courtaneur’ were used as female parents to cross with Abeliophyllum distichum in 2011 and an intergeneric hybrid of F. suspensa × A. distichum was obtained, though with very low seed set. The morphological characteristics, flower fragrance and volatile organic compounds of flowers were analysed. The intergeneric hybrid had intermediate morphological characteristics of both parents and flower fragrance and was confirmed as a true intergeneric hybrid by amplified fragment length polymorphism (AFLP) markers. Compared with its mother parent (F. suspensa), flowers of the intergeneric hybrid are pale yellow with delicate fragrance. Volatile organic compounds of flowers were retrieved by purge-and-trap techniques, and determined by gas chromatography and mass spectrometry (GC–MS). The main volatile organic components of F. suspensa were isoprenoids, while the main volatile organic components of A. distichum and the hybrid of F. suspensa × A. distichum were aliphatics. To determine the time and the site of intergeneric hybridizing barriers occured, the pollen tubes’ behavior after pollination was observed under fluorescence microscopy. It was found that significant pre-fertilization incompatibility existed in intergeneric crossing combinations [F. ‘Courtaneur’ (Pin) × A. distichum (Thrum) and F. suspensa (Pin) × A. distichum (Thrum)], and only a few pollen tubes of A. distichum penetrated into the ovaries of Forsythia. In our research, an intergeneric hybrid between Forsythia and Abeliophyllum was obtained for the first time, which will provide a solid foundation for expanding the flower color range of Forsythia and breeding fragrant-flowered cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号