首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabica coffee production is based on highly productive cultivars; however, these cultivars are susceptible to infestation by several biotic agents, including root-knot nematodes. Collections of wild Coffea arabica germplasm represent an important source of genetic variability for resistant cultivar development. In this study, 1046 plants derived from 71 wild coffee trees were evaluated with respect to Meloidogyne paranaensis resistance. In addition to information on plants reactions, we also evaluated the genetic parameters related to resistance. Progenies from the five most promising plants were also evaluated regarding resistance to M. incognita and M. exigua. The yield potential of selected plants was estimated through analysis of data for fruits harvested in 4 different years. Forty-seven plants were considered resistant based on reproduction factor values. The estimated heritability was high for all analyzed variables leading to substantial selection gain, mainly at the progeny mean level. On the basis of heritabilities and genetic correlations, we conclude that selection could be performed based on values of the gall and egg mass index. However, higher genetic gain could be obtained based on nematode count variables. A second experiment confirmed the reactions of the selected five plants to M. paranaensis, and multiple resistance was detected in three of them. The resistant accessions also have yield potential.  相似文献   

2.
This study reports the implementation of three strategies for the development of genetic markers and their evaluation in both progenitors of an F2 population used for the construction of a genetic map of Coffea arabica. The strategies were Cleaved Amplified Polymorphic Sequences (CAPS), Single Strand Conformational Polymorphism (SSCP), and sequence analysis predicted Single Nucleotide Polymorphism (SNP). The methodologies were developed from different sequence sources: For CAPS, we used 25 COS sequences derived from Hedyotis spp. and 29 COSII sequences derived from Solanaceae and Rubiaceae species; for SSCP, we used 111 coffee EST sequences, 50 COSII sequences, and 10 C. arabica BAC end sequences. A low polymorphism was identified with the CAPS and SSCP methodologies. A total of 61 SNPs were identified in silico from 5,371 ESTs of coffee and from amplified, cloned, and sequenced COSII markers. Sixteen of these SNPs were validated with Luminex technology and 2 of them were polymorphic in C. arabica genotypes. This study highlights the difficulties of finding polymorphism in the species C. arabica where SNP identification seems to be the best strategy to search for polymorphic markers for this low diversity plant.  相似文献   

3.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

4.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

5.
Coffea arabica F1 hybrids derived from crosses between wild Sudan-Ethiopian and American cultivars and propagated by somatic embryogenesis have been obtained in Central America. These new hybrids considerably enhanced the genetic diversity of coffee in the region. We conducted 15 trials to assess whether using hybrids represents substantial genetic progress in terms of productivity in agroforestry and full-sun cropping systems. The new germplasm was grown in the same conditions as the best American cultivar (homozygous pure lines). The results showed that yields of hybrids were earlier and superior to those of American cultivars. The hybrids were also more stable than the American cultivars in all environments. In the agroforestry system, the mean yield of hybrids was 58% higher than that of the American cultivars, while the mean yield of hybrids in the full-sun system was 34% higher. Coffee-based agroforestry systems (AS) are considered effective in protecting the environment in the volcanic cordilleras of Central America. We found that introducing hybrids in coffee-based AS can considerably increase productivity. This finding could be a convincing argument to encourage coffee growers who have adopted the full-sun cropping system to return to agroforestry cropping systems. Finally, the conditions for large-scale dissemination of those new hybrids—which represent a major innovation for C. arabica cropping—was analysed.  相似文献   

6.
Grain hardness plays an important role in determining both milling performance and quality of the end-use products produced from common or bread wheat. The objective of this study was to characterize allelic variations at the Pina and Pinb loci in Xinjiang wheat germplasm for further understanding the mechanisms involved in endosperm texture formation, and the status of grain texture in Chinese bread wheat. A total of 291 wheat cultivars, including 56 landraces, and 95 introduced and 140 locally improved cultivars, grown in Xinjiang, were used for SKCS measurement and molecular characterization. Among the harvested grain samples, 185 (63.6%), 40 (13.7%), and 66 (22.7%) were classified as hard, mixed and soft, respectively. Eight different genotypes for the Pina and Pinb loci were identified, including seven previously reported genotypes, viz., Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1p, Pina-D1a/Pinb-D1q, Pina-D1a/Pinb-D1aa, Pina-D1a/Pinb-D1ab, and a novel Pinb allele, Pinb-D1ac. This new allele, detected in Kashibaipi (local landrace) and Red Star (from Russia) has a double mutation at the 257th (G to A substitution) and 382nd (C to T substitution) nucleotide positions of the coding region. Pina-D1b, Pinb-D1b, and Pinb-D1p were the most common alleles in Xinjiang wheat germplasm, with frequencies of 14.3%, 38.1% and 28.6% in hard textured landraces, 25.5%, 56.9% and 11.8% in hard introduced cultivars, and 24.8%, 47.8% and 26.5% in hard locally improved cultivars, respectively. The restriction enzymes ApaI, SapI, BstXI and SfaNI were used to identify Pinb-D1ab or Pinb-D1ac, Pinb-D1b, Pinb-D1e and Pinb-Dg, respectively, by digesting PCR products of the Pinb gene. The unique grain hardness distribution in Xinjiang bread wheat, as well as the CAPs markers for identification of the Pinb alleles provided useful information for breeding wheat cultivars with optimum grain textures. Liang Wang and Genying Li—contributed equally to this work.  相似文献   

7.
The performance of F1 hybrid plants derived from crosses between traditional varieties of Coffea arabica of Latin America with a wild collection of Sudan–Ethiopian origin were studied for yield, fertility and bean weight. Sudan–Ethiopian material possesses resistance to certain diseases, and possibly, better beverage quality. The objective of this breeding programme is to widen the very narrow genetic base of Central American coffee, even while increasing quality and productivity. The hybrid plants were obtained from two factorial crosses made and evaluated in two locations. They were compared in the two field trials using the six maternal lines as controls. Observations were taken on vegetative characters, annual and cumulated yield, dry weight of 100 beans, extent of early abortion as measured by the fraction of peaberries and post-zygotic ovule fertility as measured by the fraction of mature no-floating berries in water (FF). The F1 hybrid population were compared to the populations of maternal lines for the aforementioned variables. An index-based selection was done in the hybrid populations employing three traits, yield, 100-bean weight and the post-zygotic fertility (FF). The performance of the selected hybrids was then compared to those of the best parental control lines in each trial. The hybrid populations yielded 22–47% more than the maternal lines, but hybrids showed significantly more sterility than the parental control lines. Selection in the hybrid populations using the three selected traits led to significant genetic gain for yield and dry weight of 100 beans, and insignificant gain for fertility (FF). When selected on the basis of fertility alone, increase in yield and 100-bean weight were not obtained within the hybrid populations. By applying selection on yield and 100-bean weight, the selected hybrids produced 11–47% higher yields than the best line along with significantly higher or identical 100-bean weight and performed identically for fertility. The yield performance of hybrids between the Latin American material and the wild Sudan–Ethiopian material calls for further selection effort for improving beverage quality.  相似文献   

8.
The potential of microsatellite markers for use in genetic studies has been evaluated in Allium cultivated species (Allium cepa, A. fistulosum) and its allied species (A. altaicum, A. galanthum, A. roylei, A. vavilovii). A total of 77 polymerase chain reaction (PCR) primer pairs were employed, 76 of which amplified a single product or several products in either of the species. The 29 AMS primer pairs derived from A. cepa and 46 microsatellites primer pairs from A. fistulosum revealed a lot of polymorphic amplicons between seven Allium species. Some of the microsatellite markers were effective not only for identifying an intraspecific F1 hybrid between shallot and bulb onion but also for applying to segregation analyses in its F2 population. All of the microsatellite markers can be used for interspecific taxonomic analyses among two cultivated and four wild species of sections Cepa and Phyllodolon in Allium. Generally, our data support the results obtained from recently performed analyses using molecular and morphological markers. However, the phylogeny of A. roylei, a threatened species with several favorable genes, was still ambiguous due to its different positions in each dendrogram generated from the two primer sets originated from A. cepa and A. fistulosum.  相似文献   

9.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

10.
The whitefly-transmitted Tomato chlorosis virus (ToCV) (genus Crinivirus) is associated with yield and quality losses in field and greenhouse-grown tomatoes (Solanum lycopersicum) in South America. Therefore, the search for sources of ToCV resistance/tolerance is a major breeding priority for this region. A germplasm of 33 Solanum (Lycopersicon) accessions (comprising cultivated and wild species) was evaluated for ToCV reaction in multi-year assays conducted under natural and experimental whitefly vector exposure in Uruguay and Brazil. Reaction to ToCV was assessed employing a symptom severity scale and systemic virus infection was evaluated via RT-PCR and/or molecular hybridization assays. A subgroup of accessions was also evaluated for whitefly reaction in two free-choice bioassays carried out in Uruguay (with Trialeurodes vaporariorum) and Brazil (with Bemisia tabaci Middle-East-Asia-Minor1—MEAM1?=?biotype B). The most stable sources of ToCV tolerance were identified in Solanum habrochaites PI 127827 (mild symptoms and low viral titers) and S. lycopersicum ‘LT05’ (mild symptoms but with high viral titers). These two accessions were efficiently colonized by both whitefly species, thus excluding the potential involvement of vector-resistance mechanisms. Other promising breeding sources were Solanum peruvianum (sensu lato) ‘CGO 6711’ (mild symptoms and low virus titers), Solanum chilense LA1967 (mild symptoms, but with high levels of B. tabaci MEAM1 oviposition) and Solanum pennellii LA0716 (intermediate symptoms and low level of B. tabaci MEAM1 oviposition). Additional studies are necessary to elucidate the genetic basis of the tolerance/resistance identified in this set of Solanum (Lycopersicon) accessions.  相似文献   

11.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

12.
Symbiotic gene mutated in the pea (Pisum sativum L.) line RisfixC is a determinant of the number of symbiotic root nodules. In parallel to a sharp increase in nodule number, its mutational inactivation brings about the insensitivity of nodulation to the ambient nitrate level (Nts trait). Using the established localization to the SYM2-NOD3 region of the pea linkage group I, functional PCR markers were developed for the orthologous region on the chromosome 5 of the model species Medicago truncatula. Owing to the conservation of the binding regions of the designed primers, pea orthologues were successfully amplified with 60% of the primer pairs tested. When applied to a mapping pea population from the cross of the line RisfixC x Afghanistan L1268 (sym2), the new markers allowed to localize the supernodulation mutation within 2.5 cM confidence interval in the pea genome. The placement of the functional markers on the M. truncatula chromosome 5 confined the orthologous gene location to eight overlapping BACs spanning approximately 710 kbp (positions 37,755,678–38,467,472). The narrowed list of the annotated Medicago genes in combination with the published data on their symbiotic and nitrate regulation can be used for the candidate gene identification, together with the requirements imposed by the known function in nodule number initiation and nitrate sensing. In addition, the new markers are applicable for tracking the RisfixC allele in breeding programmes aimed at the improvement of symbiotic performance.  相似文献   

13.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

14.
15.
Agrobacterium-mediated genetic transformation was performed using embryonic axes explants of pigeon pea. Both legume pod borer resistant gene (cry1Ac) and plant selectable marker neomycine phosphor transferase (nptII) genes under the constitutive expression of the cauliflower mosaic virus 35S promoter (CaMV35S) assembled in pPZP211 binary vector were used for the experiments. An optimum average of 44.61% successfully hardened dot blot Southern hybridization positive plants were obtained on co-cultivation media supplemented with 200 μM acetosyringone without L-cysteine. The increased transformation efficiency from a baseline of 11.53% without acetosyringone to 44.61% with acetosyringone was further declined with the addition of different concentrations of L-cysteine to co-cultivation media. Transgenic shoots were selected on 50 and 75 mg L−1 kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 20 g L−1 sucrose and 0.5 mg L−1 indole butyric acid in the absence of kanamycin. Furthermore, 100% seed setting was found among all the transgenic events. The plants obtained were subjected to multi- and nochoice tests to determine the behavioral responses and mortality through Helicoverpa armigera bioassays on the leaf and relate their relationship with the expression of cry1Ac protein which was found to be less in leaf as compared to the floral buds, anther, pod, and seed.  相似文献   

16.
The Brassicas are affected by several diseases, of which black rot, Xanthomonas campestris pv. campestris (Pam.) Dowson (Xcc), is one of the most widespread and devastating worldwide. The black rot bacteria causes systemic infection in the susceptible plants and penetrate the plants through the hydathodes or wounds. Typical disease symptoms are ‘V’ shaped necrotic lesions appearing from the leaf margins with blackened veins. Periodic outbreaks of the black rot pathogen have occurred worldwide, especially in the continental regions, where high temperatures and humidity favor the incidence of disease occurrence causing huge yield loss. The challenge to control the losses in vegetable brassicas production is made more difficult by the adverse climatic changes and evolution of new pathogenic races. The development of black rot resistant hybrids/varieties is the most reliable long term practical solution for effective disease control. Identification of new resistant genetic resources, tightly linked markers with resistance loci and QTL mapping would facilitate the breeding programme for black rot resistance. Information regarding genetics of resistance and mapping of resistance genes/QTLs will accelerate the marker assisted resistance breeding in brassica crops against Xcc. In future we need to identify the race specific candidate genes for and their validation through transgenics and gene expression. Moreover, it is imperative to identify functional markers for resistance genes through identification of R gene families and their relationship with resistance expression. This comprehensive review will help the researchers working in this area to understand the dynamics of black resistance breeding and to formulate future breeding strategies.  相似文献   

17.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant (hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes 6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify the single shortest translocation and to develop appropriate markers are being continued.  相似文献   

18.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

19.
L. M. Reid  X. Zhu  A. Parker  W. Yan 《Euphytica》2009,165(3):567-578
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently largest general combining ability effects and several significant specific combining ability effects. It was concluded that some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium ear rot.  相似文献   

20.
Coffee varieties with resistance for the plant-parasitic nematodes Pratylenchus coffeae and Radopholus arabocoffeae are limited in Vietnam. A selection of imported varieties and high yield varieties of Arabica coffee in Vietnam were evaluated for resistance to both plant-parasitic nematode species in Northern Vietnam. The same experiments were carried out with hybrid arabica coffee, three selected clones of Coffea canephora and one clone of Coffea excelsa in the Western Highland of Vietnam. The screened coffee accessions from Ethiopia (KH1, KH13, KH20, KH21, KH29, and KH31) were susceptible and good host for P. coffeae. Also accessions 90P4 (Portugal) and Oro azteca (Mexico) had a reproduction factor Rf > 1. Pluma Hidalgo (Mexico), 90/6 (Vietnam), 90P3 (Portugal), 90P2 (Vietnam), Variedad (Mexico), 90T (Portugal), and Garnica (Mexico) were poor hosts (Rf < 1) but not tolerant to P. coffeae, expressed by a reduction of root weight compared to untreated control plants. Most of the coffee accessions tested in Northern Vietnam were intolerant to R. arabocoffeae, except 90T which showed no reduction of root weight, even at high initial nematode densities (4,000/pot). Good hosts for R. arabocoffeae were Variedad, KH1, KH21, KH29, KH20, KH31, and KH13 with Rf > 1. Pluma Hidalgo, 90/6, 90P3, 90P2, 90T, Oro azteca, and Garnica were poor hosts (Rf < 1). In the Western Highland experiment, all arabica coffee accessions were susceptible for P. coffeae with Rf ranging from 1.41 to 1.59. Tolerance to P. coffeae was found in C. liberica var. Dewevrei, Hong34 and Nhuantren. Coffea excelsa, Hong34, Nhuantren, and H1C19 were tolerant to R. arabocoffeae at the highest inoculation density (4,000 nematodes/pot). The most susceptible accessions were Nhuantren and K55. Resistance (Rf < 1) to R. arabocoffeae was found in C. liberica var. Dewevrei and Hong34. This article reports on the first screening for resistance and tolerance to P. coffeae and R. arabocoffeae in coffee accessions in Vietnam and shows promising results for enhanced coffee-breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号